
WL-TR-97-1163

SYSTEM LEVEL DESIGN METHODOLOGY FOR
EMBEDDED SIGNAL PROCESSORS

EDWARD A. LEE

UNIVERSITY OF CALIFORNIA AT BERKELEY
DEPARTMENT OF ELECTRICAL AND COMPUTER
SCIENCE
BERKELEY, CA 94720

AUGUST 1997

FINAL REPORT FOR 09/15/93-06/30/97

ethodolog

/RASSP\
I Reinventing I
1 Electronic j

. Design
Architecture Infrastructure

DARPA • Tri-Services

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

19980505 002 DTIC QTFAX; ■iy

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than
in connection with a definitely Government-related procurement, the United States Government
incurs no responsibility nor any obligation whatsoever. The fact that the Government may have
formulated or in anyway supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the holder, or any
other person or corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

This report is releasable to the national technical information service (NTTS). At NTIS, it
will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

KERRY HILL, Project Engineer
Embedded Information Systems

Engineering Branch
AFRL/IFTA

7^.J.3l^^ 'J&XKMT^

JA^IES S. WILLIAMSON, Chief
Embedded Information Systems

Engineering Branch
AFRL/IFTA

^Uk, lu
STANLEY E. WAGNER,
Wright Site Coordinator
Information Directorate
AFRL/IFW

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR
MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR
ORGANIZATION, PLEASE NOTIFY AFRL/IFTA, WRIGHT-PATTERSON AFB OH 45433-
7334 TO HELP US MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations end Reports, 1215 Jefferson Davis Highway, Suite 1204, ArSngton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leaveblankl 2. REPORT DATE

8/23/97
3. REPORT TYPE AND DATES COVERED

Final 9/15/93-6/30/97
4. TITLE AND SUBTITLE

System-Level Design Methodology for Embedded Signal Processors

6. AUTHOR(S)

Edward A. Lee

5. FUNDING NUMBERS

C F33615-93-C-1317
PE 63739
PR A268
TA 02
WU 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Regents of the Univesity of California
336 Sproul Hall
U.C. Berkeley
Berkeley, CA 94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

442427-25327

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Avionics Directorate
Wright Laboratory-
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7623
POC: Kerry L. Hill, AFRL/IFTA 937-255-7698 x3604

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

WL-TR-97-1163

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release: Distribution is Unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words}

The focus of this project was on desing methodology for complex real-time, reactive systems where a variety of design
methodologies and implementation technologies must be combined. Design methodologies are encapsulated in one or more
models of computation, while implementatiuon technologies are implemented as synthesis tools. Applications that use more
than one model of computation and/or more than one synthesis tool are said to be heterogeneous. Hardware/ software
codesign is one example of such heterogeneous design.

14. SUBJECT TERMS

VHDL, design methodology, heterogeneous design

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

72
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

1. Project Overview 4
2. Heterogeneous Design Principles 5

2.1. Reactive Systems 5
2.2. System-Level Design 5
2.3. Heterogeneous Implementations 6
2.4. Models of Computation 8

2.4.1. Differential Equations 9
2.4.2. Difference Equations 10
2.4.3. Process Networks and Dataflow 10
2.4.4. Synchronous/reactive Models 11
2.4.5. Discrete-Event Models 12
2.4.6. Rendezvous Models 12
2.4.7. Finite-State Machines 13

2.5. Choosing Models of Computation 14
3. Technology Transfer 18

3.1. Cadence Uses Ptolemy in SPW3.5 18
3.2. Hewlett-Packard Integrates Ptolemy with Analog Simulation 19
3.3. Lockheed-Martin Develops Architectural Trade-off Analysis Tool 19
3.4. BNeD Extends Ptolemy for Modeling Telecommunication Networks 20
3.5. DQDT Uses Ptolemy VHDL Generation For ASIC Design 20
3.6. BDTI Uses The Ptolemy Kernel To Integrate Other Tools 20
3.7. Technologies Lyre Develops DSP Rapid Prototyping Under Ptolemy 20
3.8. Ptolemy Miniconferences 20

3.8.1. First Ptolemy Miniconference—March 10, 1995 21
3.8.2. Second Ptolemy Miniconference — March 14, 1997 22

3.9. Ptolemy Tutorial 23
3.10.Other Distribution Mechanisms 24
3.11.New Book: Software Synthesis from Dataflow Graphs 24
3.12.POLIS — A Codesign System Based On Ptolemy 25
3.13.A New Graduate Class on Modeling of Systems 25
3.14.Embedded Software SYstems Class at UT Austin 26

4. Summary of Accomplishments 27
4.1. System-Level Design 27

4.1.1. Hardware/Software Partitioning 2 7
4.1.2. Synthesis of VHDL From Dataflow Graphs 28
4.1.3. Partitioning SDF Applications Into Multiple VHDL Hardware Modules 28
4.1.4. VHDL-Based Hardware Design Mixed With Software and Environment 29
4.1.5. Structural VHDL 30
4.1.6. Silage Interface to Hyper High-Level Synthesis Tool 30
4.1.7. Heterogeneous Simulation 30
4.1.8. Automated Rearrangement of Signal Processing Systems 31
4.1.9. Signal Reprocessing 31

4.2. Algorithm Representation 32
4.2.1. Higher-Order Functions 32
4.2.2. Leveraging External Tools 33

4.2.3. Communicating Processes Domain 33
4.2.4. Message Queue Domain 33

4.3. Scheduling and Code Generation for Synchronous Dataflow 33
4.3.1. Scheduling of Dataflow Graphs for Efficient Synthesis 34
4.3.2. Hierarchical Scheduling and Code Generation 34
4.3.3. Mixing Code Generation with Simulation 35
4.3.4. Guided Migration: a Retargeting Tool 36

4.4. Dataflow and Kahn Process Networks 37
4.4.1. Dynamic Dataflow Scheduling 37
4.4.2. Process Networks Domain 38

4.5. Multidimensional Signal Processing 39
4.5.1. Multidimensional Dataflow 39
4.5.2. Sampling Lattices 39
4.5.3. Filter Design Issues 40

4.6. Multiprocessor Targets 41
4.6.1. Resynchronization 41
4.6.2. Targeting a Network of Workstations (NOW) Cluster 42
4.6.3. Mercury Raceway Architecture 42

4.7. Control and Signal Processing 43
4.7.1. The FSM Domain 43
4.7.2. Synchronous/Reactive Modeling 44
4.7.3. Dynamically Evaluated Higher-Order Functions 46
4.7.4. Open Problems 46

4.8.Formal Methods 47
4.8.1. A Semantic Framework for Comparing Models of Computation 47
4.8.2. Semantics of Discrete-Event Systems 48
4.8.3. Semantics of Dataflow 48
4.8.4. Dataflow and Functional Languages 49

5. Software , 51
5.1. Information Dissemination Policy 51
5.2. Ptolemy 0.5 (February 1994) 51

5.2.1. Major New Features 51
5.2.2. Documentation 51

5.3. Ptiny 0.5 (April 1994) 52
5.4. Ptolemy 0.5.1 (September 1994) 52

5.4.1. Major New Features 52
5.5.PTolemy 0.5.2 (May 1995) 53

5.5.1. Major New Features 53
5.5.2. Platforms 53

5.6. Ptolemy 0.6 (April 1996) 3
5.6.1. Domains 53
5.6.2. Schedulers 53
5.6.3. Automatic Code Generation 54 '
5.6.4. Visualization 54
5.6.5. Ptolemy Infrastructure 54
5.6.6. Platforms 54

5.7. Ptolemy 0.7 (June 1997) 55

2 of 72

5.7.1. Domains 55
5.7.2. Schedulers 55
5.7.3. Code Generation 55
5.7.4. Visualization 55
5.7.5. Ptolemy Infrastructure 55
5.7.6. Platforms 55
5.7.7. Documentation 55

5.8.Tycho 56
5.8.1. Objectives 56
5.8.2. Tycho 0.1 Release (March 1996) 57
5.8.3. Tycho 0.1.1 Release (December 1996) 57
5.8.4. Tycho 0.2 Release (June 1997) 58

5.9.TMath 58
Acknowledgments 60
6.1. Participants at Berkeley 60

6.1.1. Principal Investigator 60
6.1.2. Professional Staff 60
6.1.3. Post-Doctoral Researchers 60
6.1.4. Graduate Students 60
6.1.5. Undergraduate Students 61

6.2. Participants Outside Berkeley 61
6.3. Corporate Support 62

6.3.1. Sponsors 62
6.3.2. Assistance With Software 62

Publications 64
7.1. Books and Chapters 64
7.2. Journal Articles 64
7.3. Conference Papers 65
7.4. Technical Reports 69
7.5. Ph.D. Theses 70
7.6.Masters Reports 71
7.7. Newsletter Articles 72

3 of 72

1. Project Overview

The focus of this project was on design methodology for complex real-time, reactive systems

where a variety of design methodologies and implementation technologies must be combined. Design

methodologies are encapsulated in one or more models of computation, while implementation technol-

ogies are implemented as synthesis tools. Applications that use more than one model of computation

and/or more than one synthesis tool are said to be heterogeneous. Hardware/software codesign is one

example of heterogeneous design.

The project developed formal models for such heterogeneous systems, a software environment for

the design of such systems, and synthesis technologies for implementation of such systems. In the lat-

ter category, it concentrated on problems not already addressed well elsewhere, such as the synthesis

of embedded software (code generation, sometimes called auto-coding) and the partitioning and

scheduling of heterogeneous parallel systems.

4 of 72

2. Heterogeneous Design Principles

2.1 REACTIVE SYSTEMS

Many traditional computational systems are transformational, in that they transform a body of

input data into a body of output data. Operating systems and network-aware applications, such as those

with a client-server architecture, are interactive, in that they interact with the environment, but they

interact at their own speed. This project was concerned with systems that are reactive, in that they react

continuously at the speed of the environment. It focused primarily on a subset of such systems, those

with a large component of signal processing. Such systems are computationally intensive, hard-real-

time, and typically embedded and concurrent.

2.2 SYSTEM-LEVEL DESIGN

By "system-level design" we mean design at the problem level that is relatively unencumbered by

implementation issues. For signal processing applications, a block-diagram style of specification and

design is popular, primarily because it matches the applications well. A typical model of a system,

implemented in Ptolemy, is shown in figure 1.

Such specifications are modular, in that large designs are composed of smaller designs, and these

smaller designs encapsulate specialized expertise. They are hierarchical, in that composite designs

themselves become modules, and modules may be very complicated. They are concurrent, in that

modules logically operate simultaneously. Implementations may be sequential, parallel, or distributed.

They are abstract, in that the interaction of modules occurs within a model of computation. They are

domain specific, tuned in this case to the needs of signal processing applications. Often they will need

to combine multiple domain-specific subsystems.

To be successful, system-level design must be coupled with high quality synthesis tools that trans-

late system-level specifications into implementations. For signal processing, dataflow models of com-

5 of 72

putation provide a convenient and popular means for specification. Thus, much of our work focused on

the syntax and semantics of such specifications and the synthesis of implementations from them.

2.3 HETEROGENEOUS IMPLEMENTATIONS

Embedded reactive systems today are typically implemented using a combination of implementa-

tion technologies, as suggested in figure 2. Custom digital hardware, for example, may be combined

with analog, microwave, or microelectromechanical systems (MEMS) designs. Hard real-time soft-

ware, written in assembly code for a specialized processor like a programmable DSP, may be com-

bined with higher-level software, typically written in C, that implements the control logic of the

An Adaptive .Array Processor with a A Element
Uniform Circular Array suppresses throe

Cochannei Interfcrers
■-• Hah _.

ncHi •JUfrlHawii -"i m:
Prat I «wnQriüiwtf« zoom?»*» 2«WBC«JZ>

Output Signal

T" -i-"-r- i

/
33.50 \ /*" /

\() /
v~-—-^ I^-~~

ÖJDO

J \
■**©

■ ■•)" :::. :;;;.,:...::i
:<*M».i::?"30$)!>:.

: ■„.cortrofi^i»! K»Arr*ytUS8«ifi**«P ■

■W»rHa«o<c|lw»Ot|

^';>t!Q««im> || PAU5C«S»M* <BO»T/<£»CH»» |

SHOO: "12SjS :

SlKXJs »S""-I

* »

il— ;-.,,,l,„
-!oo 0.00

FIGURE 1. A Ptolemy application, developed by an outside Ptolemy user (Uwe Trautwein of the
Technical University of Ilmenau, Germany), depicts a beam former that adaptively nulls interferes. It
is an interactive, animated simulation, where on-screen controls modify the direction of arrival of the

signal, and uses the higher-order functions and Tcl/Tk scripting capabilities in Ptolemy.

6 of 72

application. And of course, hardware and software are combined within the same design.

Two competing approaches to the design of such systems are the grand unified approach and the

heterogeneous approach. The grand unified approach seeks to find a common representation language

for all components, and to develop techniques to synthesize diverse implementations from this repre-

sentation. The heterogeneous approach uses domain-specific models of computation hierarchically

mixed and matched to define a system and seeks to find retargettable synthesis techniques from speci-

fications to diverse implementation technologies. This project pursued the latter approach, and we

believe that the results demonstrate the validity of the approach.

The heterogeneous approach has a number of advantages. First and foremost, it is clearly possible,

ASIC

network

L±l
microcontroller

real-time
operating
system

user interface
process

system interconnect

I
microwave,
microfluidic,

MEMS

FPGA

control panel

host port

programmable
DSP

memory interface

CODEC

audio/
video

FIGURE 2. Typical hardware architecture for an embedded reactive system with a significant signal
processing component. The architecture is highly heterogeneous, and its hardware-software combina-

tion is only one manifestation of this.

7 of 72

while there is no clearly usable grand unified approach. In addition, it emphasizes domain specific

techniques, which match the applications better. Furthermore, because they are more specialized,

domain-specific techniques are more amenable to high-level synthesis.

Any particular (known) candidate for a grand unified approach has a number of serious disadvan-

tages. First, it must, of necessity, impose a model of computation. For example, choosing to use an

imperative language will impose a sequential model of computation. But any particular model of com-

putation can greatly affect the chosen system architecture. Using an imperative language, for instance,

will strongly bias implementations towards software over hardware. On the other hand, using a dis-

crete-event model of computation, as with structural VHDL, will strongly bias the implementation

towards hardware over software. If a grand unified approach fails to impose a model of computation,

then it will have all of the disadvantages of the heterogeneous approach and none of the advantages.

In the heterogeneous approach, multiple models of computation may be used at the problem level

(figure 1) and the implementation level (figure 2). The core of the project, therefore, was on the rela-

tionship between heterogeneous models at these two levels, as suggested in figure 3. This relationship

consists of a modeling relationship (where a problem-level description is a model of an implementa-

tion), synthesis (where a problem-level description is translated into an implementation-level descrip-

tion), and mapping (where modules at one level are related to modules at the other).

2.4 MODELS OF COMPUTATION

There are a rich variety of models of computation that deal with concurrency in different ways. In

this section, we outline some of the most promising models that we uncovered during the course of this

project. All of these will lend an interpretation, or semantics, to the same bubble-and-arc, or block-

and-arrow diagram shown in figure 4.

8 of 72

2.4.1 Differential Equations

One possible semantics for the syntax in figure 4 is that of differential equations. The arcs repre-

sent continuous functions of a continuum that is interpreted as time. The bubbles represent relations

between these functions. The job of a simulator is to find a fixed-point, i.e., a set of functions that sat-

problem level (heterogeneous models of computation)

"iOssräisiasjsss ■■■«.*3->-3rva>lry..
. - .'

 _ - ! -A

"" " ~" .'

\

mapping, synthesis, &
modeling

z
J mfctvmue; I I PpOA

frntcnamiic. / /
' MBMS f * a— r

/ control panel |

implementation level (heterogeneous implementation technologies)

FIGURE 3. The focus of this project was on heterogeneous problem-level modeling, heterogenous
implementation-level modeling, and the relationship between these levels.

FIGURE 4. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possible semantics (interpretations).

9 of 72

isfy all the relations.

Differential equations are excellent for modeling analog circuits and many physical systems. This

is the model of computation used in Spice circuit simulators. However, they have disadvantages. Since

they directly describe a physical system, they are tightly bound to an implementation, leaving few

implementation options. In addition, they can be expensive to simulate (and hence, expensive to imple-

ment in software). Thus, differential equations are best used for implementation-level modeling.

Although at Berkeley we have not created the ability to use differential equations in Ptolemy,

Hewlett-Packard has recently announced an integration of Ptolemy with their well regarded analog and

microwave circuit simulators. For more details, see Section 3 "Technology Transfer" on page 18.

2.4.2 Difference Equations

Differential equations can be discretized to get difference equations, a commonly used model of

computation in digital signal processing. This model of computation can be further generalized to sup-

port multirate difference equations. In either case, a global clock defines the discrete points at which

signals have values (at the ticks).

Difference equations are considerably easier to implement in software, and hence leave more free-

dom of implementation. Thus, they can be used at the problem level. Their key weaknesses are the glo-

bal synchronization implied by the clock, and the awkwardness of specifying irregularly timed events

and control logic.

The synchronous dataflow domain in Ptolemy is used to model difference equations, although it is

slightly more general, and avoids the global synchronization implied by a pure interpretation of differ-

ence equations.

2.4.3 Process Networks and Dataflow

In a Process Network (PN) model of computation, the arcs represent sequences of data values

10 of 72

(tokens), and the bubbles represent functions that map input sequences into output sequences. Certain

technical restrictions on these functions are necessary to ensure determinacy, meaning that the

sequences are fully specified. Dataflow models, popular in signal processing, are a special case of pro-

cess networks [14].

PN models are excellent for signal processing. They are loosely coupled, and hence relatively eas-

ily to parallelize or distribute. They can be implemented efficiently in both software and hardware

(something demonstrated by this project), and hence leave many implementation options open. Thus,

they are best used for problem-level specification.

A key weakness of PN models is that they are awkward for specifying control logic.

PN models are implemented in Ptolemy using a hierarchy of four nested domains. These are, from

smallest (least general) to largest (most general): synchronous dataflow (SDF), boolean dataflow

(BDF), dynamic dataflow (DDF), and process networks (PN). Many improvements in this technology

were completed under this project, and many of the results have been successfully transferred to indus-

try.

2.4.4 Synchronous/reactive Models

In the Synchronous/Reactive (SR) model of computation, the arcs represent data values that are

aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but unlike

difference equations, a signal need not have a value at every clock tick. The bubbles represent relations

between input and output values at each tick, and are usually partial functions with certain technical

restrictions to ensure determinacy.

SR models are excellent for applications with concurrent and complex control logic. They can be

realized in the popular Esterel language and certain variants of the Statecharts language. Because of

the tight synchronization, however, some applications are overspecified in the SR model, limiting the

11 of 72

implementation alternatives. Moreover, in most realizations, modularity is compromised by the need to

seek a global fixed point at each clock tick.

A key result of this project was to develop a modular SR model of computation and an implemen-

tation in Ptolemy [74]. This is the first realization of the SR model of computation that mixes cleanly

with other models of computation, thus allowing the use of SR for control logic in combination with,

for example, dataflow for signal processing.

2.4.5 Discrete-Event Models

In discrete-event (DE) models of computation, the arcs represent sets of events placed in time. An

event consists of a value and time stamp. This model of computation is popular for specifying hard-

ware and simulating telecommunications systems, and has been realized in a large number of simula-

tion environments, simulation languages, and hardware description languages, including VHDL and

Verilog. Unlike the SR model, there is no global clock tick, but like the SR, differential equations, and

difference equations, there is globally consistent notion of time.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally

consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where

maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock

rates. A key weakness is that it is relatively expensive to implement in software, as evidenced by the

relatively slow simulators.

2.4.6 Rendezvous Models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between sequen-

tial processes, where the bubbles represent the processes. "Atomic" means that the two processes are

simultaneously involved in the exchange. Examples of rendezvous models include Hoare's communi-

cating sequential processes (CSP) and Milner's calculus of communicating systems (CCS). This model

12 of 72

of computation has been realized in a number of concurrent programming languages, including Lotos

and Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key

element, for example, client-server database models. A key weakness of rendezvous-based models is

that maintaining determinacy can be difficult. Proponents of the approach, of course, cite the ability to

model nondeterminacy as a key strength. We have not (yet) implemented a domain in Ptolemy support-

ing the rendezvous style of concurrency because it did not seem to match the needs of RASSP well.

2.4.7 Finite-State Machines

In FSMs, bubbles represent system state and arcs represent state transitions. This model of com-

putation is radically different from all the previous ones in that it is not concurrent. Execution is a

strictly ordered sequence of state transitions.

FSM models are excellent for control logic in embedded systems, particular safety-critical sys-

tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid surprising

behavior. Moreover, FSMs are easily mapped to either hardware or software implementations, and thus

are suitable for use at the problem level.

FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as

expressive as the other models of computation described here. They are not sufficiently rich to describe

all partially recursive functions. However, this weakness is acceptable in light of the formal analysis

that becomes possible. Many questions about designs are decidable for FSMs and undecidable for

other models of computation. A second key weakness is that the number of states can get very large

even in the face of only modest complexity. This makes the models unwieldy.

The latter problem, however, can be solved by using FSMs in combination with concurrent models

of computation. This was first noted by David Harel, who introduced that Statecharts formalism,

13 of 72

which combines a loose version of SR with FSMs. FSMs have also been combined with differential

equations, yielding the so-called hybrid systems model of computation.

A major result of the Ptolemy project has been to show that FSMs can be hierarchically combined

with all of the concurrent models of computation described above. We call the resulting formalism

'""charts" (pronounced "starcharts") where the star represents a wild card. This result came fairly late

in the program, and thus has not been completely implemented in Ptolemy. However, combinations of

FSM with synchronous dataflow and discrete-event were implemented and released. Part of this work

was done with additional funding from Lockheed-Martin.

2.5 CHOOSING MODELS OF COMPUTATION

The rich variety of available concurrent models of computation outlined in the previous section

can be daunting to a designer faced with having to select them. Most designers today do not face this

choice because they get exposed to only one or two. This is changing, however, as the level of abstrac-

tion and domain-specificity of design software both rise.

An essential difference between concurrent models of computation is their modeling of time.

Some are very explicit by taking time to be a real number that advances, and placing events on a time

line or evolving continuous signals along the time line. Others are more abstract and take time to be

discrete. Others are still more abstract and take time to be merely a constraint imposed by causality.

This latter interpretation results in time that is partially ordered, and explains much of the expressive-

ness in process networks and rendezvous models of computation. Partially ordered time provides a

mathematical framework for formally analyzing and comparing models of computation. This observa-

tion has led to some key theoretical results under this project [66]. These results have profoundly

affected our view of Ptolemy domains and their interrelationships.

A grand unified approach would seek a concurrent model of computation that serves all purposes.

14 of 72

This could be accomplished by creating a melange, a mixture of all of the above, but such a mixture

would be extremely difficult to use, and synthesis and simulation tools would be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rendezvous

model, and show that all the others are subsumed as special cases. This is easy to do. Most of these

models of computation are sufficiently expressive to be able to subsume most of the others. However,

this fails to acknowledge the strengths and weaknesses of each model of computation.

We believe that a key result of this project is to show that the heterogeneous approach is viable and

much more promising than the grand unified approach, at least in the near term. This result follows

from considering the problem of validating designs. Validating designs consists of verifying that cer-

tain desirable properties are held and that certain undesirable properties are not held.

Perhaps the most important consideration in choosing a model of computation is the impact that

the choice has on the quality of the end design. Two key aspects of this quality are its correctness and

its cost. Let us focus on correctness. The choice of model of computation can strongly affect the ability

to validate the correctness of a design.

A number of methods can be used to validate designs. The simplest to use is validation by con-

struction, where the property to be verified is true of all designs specified within the model of compu-

tation, so a particular design does not need to be explicitly validated. An example of a property that is

often verified this way is determinacy, which loosely means that the specification completely describes

the behavior of a system. A model of computation that yields to this style of validation is intrinsically

limited in expressiveness, since it cannot describe designs that violate certain properties.

In practice, few properties can be practically validated by construction. A second choice would be

formal verification, where a property is verified by either formal manipulation of the syntax of the

specification or by algorithmic search over possible behaviors. Formal verification, however, has

15 of 72

proven practical only with models of computation with rather limited expressiveness, such as finite

state machines.

A third choice is to validate designs by simulation, in which a property is shown to hold over a set

of example inputs. In practice, it is difficult (or often impossible) for the set of example inputs to be

comprehensive, representing all possible inputs. Thus, this validation method is less reliable than the

prior methods.

An alternative to simulation is validation by prototyping, where a representative implementation of

the system to be validated is built and deployed in a representative environment. This method often

permits more exhaustive testing, although in practice, the representative environment may fail to repre-

sent a realizable environment that will cause the system to fail.

The last resort is validation by intuition. In practice, some combination of intuition, simulation,

and prototyping is the most common form of validation today. The role of intuition is critical, and

indeed exploits the considerable strengths of the human abilities of the designers. However, as system

complexity increases, intuition breaks down.

The validation methods described are not all equally desirable. In the order given here (by con-

struction, formal verification, simulation, prototyping, and intuition), we would argue that if a property

can be verified by a technique earlier in the list, then a designer should always choose to use that

method over a method later in the list. Thus, the choice of model of computation should be influenced

by the desire to move validation up the list.

Validation methods early in the list, however, are more effective if the model of computation is

more limited in expressiveness. Thus, the desire to work with an expressive and general model of com-

putation is at odds with the effectiveness of validation.

A similar argument can be made for synthesis. Effective synthesis requires more restricted models

16 of 72

of computation. A familiar form of evidence for this argument is that VHDL has been written using a

particular style in order for hardware synthesis tools to generate cost-effective designs. The expressive-

ness of VHDL is excessive from this perspective. While it is possible that this reflects limitations in the

state of knowledge, we believe that instead it reflects fundamental limitations. Effective synthesis from

high-level descriptions requires that the high-level descriptions exist within a model of computation

that has limited expressiveness.

This intrinsic tension, between expressiveness and validation/synthesis, can only be resolved

through heterogeneity. Systems must be broken into modules, and these modules must be designed

within specialized models of computation that match their functionality. This is the key principle

underlying the Ptolemy project.

17 of 72

3. Technology Transfer

One of the notable successes of this project was its demonstrable transfer of technology to industry

leaders in the computer-aided design and defense industries. This was accomplished via a careful cul-

tivation of industry contacts and a strategy of wide open, very liberal distribution of software and pub-

lications. All software was made available on the Web with the most liberal copyright notice permitted

by the University of California. This notice retains ownership of the copyright, but expressly grants

permission to use the software for any purpose, including development of commercial products. It is

distinctly more liberal than the GNU public license, and thus better represents "free software."

Two leaders in the CAD industry, Cadence (The Alta Group) and Hewlett-Packard (EEsof Divi-

sion) made use of this policy to incorporate technology from this project into their CAD frameworks,

as discussed below. Several smaller companies made use of Ptolemy software, extending it for their

own purposes, and numerous companies used Ptolemy as an experimental design environment.

Efforts to further promote technology transfer included the development of a new graduate class at

Berkeley, the organization of two miniconferences, and the hosting of a visiting scholar from one of

the leading government labs working in system level design, the group at the Naval Research Labs that

has developed the processing graph method (PGM), which is closely related to the dataflow technol-

ogy advanced in the Ptolemy project.

3.1 CADENCE USES PTOLEMY IN SPW3.5

On October 23, 1995, The Alta Group of Cadence Design Systems announced SPW 3.5, which

contains three key technologies from Ptolemy: mixing of discrete-event and dataflow models of com-

putation, and synchronous and dynamic dataflow scheduling technology. The subtitle of Alta's press

release is:

18 of 72

"New SPW* Simulation Technology for Convergence Applications Leverages Berkeley's
Ptolemy Project Research"

In the body of the press release:

"The new simulation architecture is based on research from the renowned Ptolemy research
project at the University of California at Berkeley.... [It] utilized the Ptolemy team's results to
uniquely implement Ptolemy's advanced simulation algorithms in Alta Group's leading SPW
solution."

We believe that this interaction with Cadence and others has ensured that the best results of the project

make their way into self-sustaining commercial products. The full press release is available on the

Ptolemy Web site.

3.2 HEWLETT-PACKARD INTEGRATES PTOLEMY WITH ANALOG SIMULATION

On June 2, 1997, Hewlett-Packard's EEsof Division announced plans to deliver a comprehensive

digital signal processing (DSP) design system as part of its effort to broaden its solutions for the elec-

tronic design automation (EDA) industry. In their June 2, 1997, press release, HP EEsof states:

"Built into the HP DSP Designer software is a new simulation technology developed by merg-
ing HP research and technology with the University of California at Berkeley Ptolemy project.
This new simulation engine facilitates cosimulation of time, frequency and data flow technolo-
gies and significantly expands the DSP development capability for mixed RF/analog/DSP
communications projects."

The software is comprised of two new DSP tools - DSP Designer and DSP Synthesis. It is part of HP's

newly introduced HP Advanced Design System, which includes the latest versions of its highly

regarded RF and analog circuit simulation technology. The complete press release and a related article

from EE Times are available on the Ptolemy Web site.

3.3 LOCKHEED-MARTIN DEVELOPS ARCHITECTURAL TRADE-OFF ANALYSIS TOOL

Sanders, a Lockheed-Martin company, has been using Ptolemy to develop tools for architectural

evaluation and trade-off analysis. Their work leverages the SDF and DE domains in Ptolemy, enhanced

with their own user interface and visualization tools.

19 of 72

3.4 BNED EXTENDS PTOLEMY FOR MODELING TELECOMMUNICATION NETWORKS

We have recently learned about the establishment of a new company in Germany that develops

products based upon Ptolemy. BNeD, Broadband Network Design, develops and sells products based

upon Ptolemy for analysis, planning, optimization and testing of next generation telecommunication

core (optical) and local exchange networks. Their Web page is:

http ://www.bned.com

3.5 DQDT USES PTOLEMY VHDL GENERATION FOR ASIC DESIGN

DQDT, Dimensions in Quick Design Turnaround, derived a new VHDL domain in Ptolemy to

serve as a front end specification and VHDL code generation environment for behavior modeling and

synthesis of ASICs.

3.6 BDTI USES THE PTOLEMY KERNEL TO INTEGRATE OTHER TOOLS

Berkeley Design Technology Inc. (BDTI) wrote a layer on top of the Ptolemy kernel called

Ptolemy HSIM (Heterogeneous Simulation) to serve as a simulation backplane that allowed Cadence's

Signal Processing Workstation (SPW), Cadence's Bones and Precedence's SimMatrix tools to cooper-

ate during a simulation. (Precedence has since been acquired by Mentor Graphics.) SimMatrix is a

synchronization mechanism for connecting 30 different VHDL and Verflog simulators together.

3.7 TECHNOLOGIES LYRE DEVELOPS DSP RAPID PROTOTYPING UNDER PTOLEMY

Technologies Lyre, in Quebec City, Canada has recently developed a rapid-prototyping DSP devel-

opment platform that works under Ptolemy and MatLab. Contact Jean-Francois Ouellet, Technologies

Lyre, aad902@agora.ulaval.ca.

3.8 PTOLEMY MINICONFERENCES

We held two miniconferences at Berkeley that reviewed major accomplishments of the Ptolemy

20 of 72

project. The objectives of the conference were primarily to report to and solicit advice from the indus-

trial sponsors and friends of the project. Both miniconferences were held in conjunction with Berke-

ley's annual Industrial Liaison Program (ILP) conferences, which included two afternoons of

laboratory demonstrations of Ptolemy software prior to the miniconferences.

3.8.1 First Ptolemy Miniconference — March 10, 1995

The First Ptolemy Miniconference drew 50 sponsors and friends of the Ptolemy project from the

following organizations:

ARPA/ESTO
Berkeley Design Technology
Cadence (the Alta Group)
Dataflow Systems
Ericsson
Hewlett-Packard
Hitachi
Hughes Aircraft Company
Lockheed Sanders
Mercury Computer Systems
Mitsubishi
Motorola (three separate groups)
NASA
Rockwell
Semiconductor Research Corporation (SRC)
Sony
Synopsys
Thomson CSF
United States Air Force
UniView Systems
Westinghouse
White Eagle Systems Technology
Wind River Systems

Presentations at the conference included:

• An Overview of the Ptolemy Kernel Architecture.
• Design Methodology Management for System-level Design.

21 of 72

• Symbolic Computation in System Simulation and Design.
• VHDL Code Generation for Simulation and Synthesis.
• Optimization Issues in Embedded Software Synthesis.
• Combined Code and Data Memory Minimization.
• Parallel Implementation.
• Real-Time Prototyping.
• Mixing Dataflow with Control.
• An Introduction to a Mathematical Model of Dataflow.
• The Process Network Domain.

3.8.2 Second Ptolemy Miniconference — March 14, 1997

This miniconference reviewed both this DARPA effort, which was at the stage of wrapping up, and

future plans and preliminary results under a new DARPA effort entitled "Design of Distributed Adap-

tive Signal Processing Systems." The conference included several outside speakers reporting on uses

of Ptolemy software and techniques plus ongoing interactions. We had 58 attendees from the following

organizations:

Adaptec
Advanced Fibre Communications
Advantest
Alta Group of Cadence Design Systems
Angeles Design Systems
Berkeley Design Technology
Data Flow Systems
Ericsson Radio Systems AB
Hewlett Packard
Hughes Aircraft
Hughes Space and Communications
LG Electronics
Lockheed-Martin
Motorola
National Semiconductor
NEC
Nortel
Rockwell International
Sanders, a Lockheed Martin Company
Seiko Epson Corp.
Semiconductor Research Corporation

22 of 72

Seoul National University
Sony
Structured Software Systems
Sun Microsystems
Synopsys
Tektronix
Thomson-CSF
University of Pittsburg
University of Texas, Austin
University of Washington
White Eagle Systems

The highlights of the conference included:

The first public demonstration of hierarchical finite-state machines combined with dataflow and
discrete-event concurrency models.
The first public demonstration of a synchronous/reactive modeling environment that supports hier-
archical heterogeneity.
The first public demonstration of Tycho, our user-interface development environment, interacting
with Java and with Ptolemy.
The first public demonstration of Web-based simulators for programmable DSPs, from UT Austin.
The first public description of an investment analysis tool from Structured Software Systems,
based on Ptolemy.

The miniconference also included descriptions of the use of Ptolemy in modeling free-space optoelec-

tronic systems (from the University of Pittsburg), a description of Myrnet network simulations in

Ptolemy (from Sanders), the use of Ptolemy for VHDL-based circuit design, research on multidimen-

sional signal processing models, and theory that we have developed to help us understand interacting

models of computation. In addition, we outlined plans for future work including a strategy for support-

ing fixed-point design and our plans for Java-based design. The proceedings of the conference are at:

http://ptolemy.eecs.berkeIey.edu/papers/viewgraphs/miniconf97/

3.9 PTOLEMY TUTORIAL

In conjunction with Dave Wilson of Berkeley Design Technology, Mike Williamson, Brian Evans,

and Edward Lee led a full-day tutorial on Ptolemy at the RASSP conference in Arlington Virginia in

23 of 72

1995. Approximately 25 people attended.

3.10 OTHER DISTRIBUTION MECHANISMS

SAL (Scientific Applications on Linux) includes Ptolemy version 0.6 on a CD ROM and Web site.

The URL is:

http://SAL.KachinaTech.COM/

Ptolemy is located at the following URL:

http://SAL.KachinaTech.C0M/E/l/PTOLEMY.html

Also, Ptolemy is now listed under Yahoo. The link is:

http://www.yahoo.com/Science/Computer_Science/

Electromc_Computer_Aided_Design ECADJTools/

3.11 NEW BOOK: SOFTWARE SYNTHESIS FROM DATAFLOW GRAPHS

A new book [1] studies the problem of synthesizing software for embedded signal processing sys-

tems starting from applications expressed as synchronous dataflow (SDF) graphs. After a comprehen-

sive review of the theory behind SDF, techniques are given to optimize primarily the program memory

size and secondarily the data memory size. To accomplish this, SDF graphs describing multirate signal

processing applications are scheduled into nested loops. A formal theory for constructing and manipu-

lating these loops is developed, and a class of looping structures, called single appearance schedules, is

shown to be the most efficient with respect to code size. The existence of such structures is studied,

and algorithms for optimally constructing them are given. Extensive experimental data is presented,

demonstrating the efficacy of the techniques.

24 of 72

3.12 POLIS — A CODESIGN SYSTEM BASED ON PTOLEMY

The group of Prof. Alberto Sangiovanni-Vincentelli at Berkeley has released a Ptolemy-based co-

design environment for control-dominated embedded systems, called POLIS. POLIS offers an inte-

grated interactive environment for specification, cosimulation, formal verification, and synthesis of

embedded systems implemented as a mix of hardware and software components. It uses and signifi-

cantly extends the discrete-event (DE) domain in Ptolemy. See:

http://www-cad.eecs.berkeIey.edu/Respep/Research/hsc/abstract.html

Cadence is known to be heavily influenced by Polis and may be commercializing it.

3.13 A NEW GRADUATE CLASS ON MODELING OF SYSTEMS

We organized a new graduate class, EE290N, "Specification and Modeling of Reactive Real-Time

Systems." This class incorporated recent results obtained under this project, and is likely to become

(after further evolution) a regular graduate class. The description of the class follows:

"This research seminar studies models of computation and programming language semantics
used for the specification and modeling of real-time and reactive electronic systems. It begins
with a review of the theory of partially ordered sets, particularly as applied to prefix orders and
Scott orders. It develops a framework for models of computation for concurrent systems that
uses partially ordered tags associated with events. Discrete-event models, synchronous/reac-
tive languages, and dataflow models are studied in this context. Basic issues of Turing com-
pleteness and lambda computability, boundedness, determinacy, reachability, and liveness are
studied, with emphasis on decidability and efficiency of verification and synthesis algorithms.
Classes of functions over partial orders, including continuous, monotonic, stable, and sequen-
tial functions are considered. A hierarchy of increasingly specialized asynchronous models,
including process networks, Kahn process networks, dataflow process networks, the Boolean
dataflow model, and the synchronous dataflow are covered. Timed models, including discrete-
event systems (as embodied for example in the VHDL and Verflog languages) and the syn-
chronous/reactive languages Signal, Lustre, Esterel, and Statecharts are studied. Throughout,
applications to signal processing, real-time, and reactive systems are emphasized, as are syn-
thesis and compilation techniques amenable to such modern approaches as embedded system
design, hardware/software codesign and formal verification."

An early version of this class was reported in [43]. More information about the most recent version of

the class can be found at its Web site:

25 of 72

http://www.eecs.berkeley.edu/~eal/ee290n/

3.14 EMBEDDED SOFTWARE SYSTEMS CLASS AT UT AUSTIN

Professor Brian Evans, formerly a postdoc under this project at Berkeley, introduced a new course

at UT Austin entitled "Embedded Software Systems" that is based on the system-level design issues

tackled under this project. The course uses Ptolemy for demonstrations, homework exercises, and stu-

dent projects, leverages material from the graduate class described in the previous subsection, and uses

the book that summarizes many of the results of this project [1]. It its most recent offering, the course

featured two guest speakers from the Ptolemy project (Praveen Murthy and Stephen Edwards). All

notes, handounts, demonstrations, etc., from the class are online at

http://www.ece.utexas.edu/~bevans/courses/ee382c/

26 of 72

4. Summary of Accomplishments

The major accomplishments of the project are summarized in this section. Concrete deliverables

included monthly and annual reports, Ptolemy software, major demonstrable technology transfer, and

86 publications, the vast majority of which have been posted on the World Wide Web. The publications

consist of one book, one chapter, 14 journal articles, 41 conference papers, 6 Ph.D. theses, 6 masters

reports, and 3 newsletter articles. For greater detail than in this report, refer to the publications and

software at the Ptolemy Web site,

http://ptolemy.eecs.berkeley.edu/

4.1 SYSTEM-LEVEL DESIGN

System-level design in Ptolemy is concerned with issues of mapping problem-level specifications

into implementations. This includes hardware/software partitioning, cosimulation, and more generally,

heterogeneous simulation. It is also concerned with coupling problem-level specifications with hard-

ware synthesis tools, including VHDL-based tools and more experimental high-level synthesis tools. It

is also concerned with the manipulation of design specifications for optimization and the semantics of

the problem-level specification languages.

4.1.1 Hardware/Software Partitioning

We developed and implemented a sophisticated hardware/software partitioning algorithm. This

algorithm supports selection from among multiple implementations within the hardware or software

categories. The area of a node implemented in hardware depends on the time allocated to run it. In our

early partitioning work we assumed the hardware to be executed in the critical time (i.e., best case, cor-

responding to the largest area) and made a binary choice for each node, choosing either hardware or

software. More recent techniques select the appropriate implementation for a node, given its area-time

curve, rather than just deciding whether it is in hardware or software. Thus, instead of only solving the

27 of 72

binary hardware/software partitioning problem, we solve the m-ary problem of partitioning into m

implementation styles.

The m-axy algorithm used the binary algorithm as the core. Experiments yielded impressive

results. The algorithm has complexity 0(nA3), where n is the number of nodes. For an eight-node

example, the optimal solution using integer linear programming required 3.5 hours. Our algorithm got

close to this optimal solution and completed in 3 minutes. This work is reported in the Ph.D. thesis of

Asawaree Kalavade [75].

4.1.2 Synthesis ofVHDL From Dataflow Graphs

We designed a mechanism for the synthesis of VHDL from dataflow graphs. This mechanism can

generate any of several different styles of VHDL code, customizing the code to optimize for synthesis

by various back-end tools, or to optimize for simulation. For simulation, sequential VHDL is usually

fastest. For synthesis, structural VHDL is usually most effective. We have demonstrated the translation

of dataflow graphs into VHDL suitable for synthesis by the Design Compiler from Synopsys as well as

rapid simulation using simulators from Synopsys and Model Technology. We completed a demonstra-

tion of a scalable beam-forming application in the retargettable VHDL domain. This uses higher-order

functions (see below) to control the number of sensors. The application also has multiple sample rates.

When the code generator is set to generate sequential VHDL, simulations ran reasonably quickly. This

work will be reported in the forthcoming Ph.D. thesis of Michael Williamson.

4.1.3 Partitioning SDF Applications Into Multiple VHDL Hardware Modules

We developed a method for the partitioning of a single application specified in synchronous data-

flow (SDF) into multiple independently-synthesizable, communicating VHDL hardware modules.

Either self-timed (asynchronous) or fully-static (synchronous) hardware implementations are allowed,

and the clock timing and control are automatically generated. We showed that this method guarantees

28 of 72

the preservation of correct functional behavior as specified in the original SDF graph, and that many

choices of partitioning into multiple hardware modules are possible. The ability to break up a larger

application into smaller synthesizable hardware modules can lead to efficiencies in hardware synthesis,

which is faster when performed on smaller VHDL specifications. At the same time, the communica-

tion between the multiple modules is sufficiently specified by the method so as to ensure that the cor-

rect functional behavior is preserved when the separate modules are executed concurrently. This work

will be reported in the forthcoming Ph.D. thesis of Michael Williamson.

4.1.4 VHDL-Based Hardware Design Mixed With Software and Environment Modeling

Typical systems today mix custom hardware with embedded software. Effective system-level sim-

ulation mandates inclusion of both, and in addition, a model of the environment. The principle in the

Ptolemy project is to use specification, modeling, and simulation techniques that are best suited for

each aspect of the design, and to mix them into a coherent whole. Thus, hardware is modeled in

VHDL, embedded software in C or assembly code, and the environment at a higher, functional level.

Using our hierarchical scheduling framework (see below), we were able to get VHDL simulations

to interact with Ptolemy simulations in the SDF domain (synchronous dataflow) and, more interest-

ingly, to interact with synthesized embedded software running in C on the host processor or in assem-

bly code on a Motorola DSP. The first demonstration system is an analysis/synthesis filter bank in

which the signal stimulus and analysis of the results are done in the CGC (code generation in C)

domain, the analysis half of the filter bank is done on a Motorola DSP56002, and the synthesis half of

the filter bank is done in the Synopsys VHDL simulator. Both the DSP and the VHDL simulator are

running code generated by Ptolemy from dataflow graphs. We believe that this is a major milestone in

heterogeneous system-level design. This work is reported in [55].

29 of 72

4.1.5 Structural VHDL

We created two VHDL code-generation domains, called VHDLF and VHDLB. The first of these

uses homogeneous synchronous dataflow semantics to describe signal processing systems at a func-

tional level. The second uses event-driven semantics to describe arbitrary systems at the behavioral

level. These domains were used successfully already in industry, by a startup company called DQDT

(Dimensions in Quick Design Turnaround). VHDLF has been supplanted, however, by the more

sophisticated VHDL domain described above.

4.1.6 Silage Interface to Hyper High-Level Synthesis Tool

We created a Silage domain that couples to Prof. Rabaey's high-level synthesis tool called Hyper.

This domain was used for the hardware side of the hardware/software partitioning experiments con-

ducted by Asawaree Kalavade [75]. We did not keep up this domain since Silage showed no promise of

catching on as a design language.

4.1.7 Heterogeneous Simulation

With help from Prof. Soonhoi Ha of Seoul National University, Korea, we developed a clean inter-

action semantics for combined synchronous dataflow and discrete-event modeling. This semantics

allows us to build arbitrarily deeply nested mixed systems while maintaining a consistent and intuitive

notion of global time. This is challenging because the synchronous dataflow (SDF) domain has no

notion of time in the conventional sense, using instead has a partially ordered notion of causality. The

model we are following is that the dataflow domains appear to any timed domain to fire "instanta-

neously." That is, they produce outputs with the same time stamps as the inputs. If they are multirate

systems, then they may optionally also produce additional events with time stamps in the future, under

the control of a target parameter. The changes that were required in the software included modifica-

tions to the DE schedulers to prevent them from advancing their notion of time beyond their requested

30 of 72

stopping time. In addition, the SDF wormhole object had to explicitly handle time stamps in order to

define its multirate behavior. We have built a number of demonstration systems that illustrate this inter-

action. This work is reported in [9].

4.1.8 Automated Rearrangement of Signal Processing Systems

We developed and released a set of heuristic search techniques written in the Mathematica pro-

gramming language. They implement breadth-first search, depth-first search, hill climbing, and simu-

lated annealing techniques for applying a set of equivalence relationships to an algebraic expression to

minimize implementation cost. One goal was to use the heuristic searches to apply the equivalence

relationships in the Signal Processing Packages for Mathematica to optimize the implementations of

Ptolemy systems. Both the Heuristic Search Packages and the Signal Processing Packages are avail-

able on the Ptolemy Web site.

4.1.9 Signal Reprocessing

We collaborated with the Boston University/MIT RASSP team on signal reprocessing in Ptolemy.

Signal reprocessing is where, based on the output of a signal processing operation, you adjust the

parameters in the operation and process the same data again to obtain a "better" result. Adaptive filter-

ing is an example. A more complicated example concerns estimating two sinusoids of unknown spac-

ing. One way is to use the FFT and adjust the FFT length until the sinusoids are resolved (separated).

There are a number of ways to provide a general framework for reprocessing signals using the het-

erogeneity supported in Ptolemy. In Ptolemy, we can define an outer reprocessing system (galaxy) that

decides how to change the processing parameters in the inner dataflow subsystems (galaxies). Before

firing the inner dataflow galaxies, the reprocessing galaxy would reset the parameters of the inner gal-

axies. The reprocessing galaxy would act as a controller of the inner galaxies. In the current release of

Ptolemy, we could define the outer-level controller using the (1) dynamic dataflow domain, and (2) the

31 of 72

synchronous dataflow domain with a higher-order function mechanism that recompiles inner galaxies

before invoking them. Two new computational models are being developed and investigated to serve as

outer controller systems: (1) a finite-state machine domain, at U.C. Berkeley, and (2) an integrated pro-

cessing and understanding of signals domain, at Boston University and U.C. Berkeley.

At the 1994 RASSP Conference, Joseph Winograd and Hamid Nawab from Boston University

demonstrated a standalone radar clutter analysis testbed using the Integrated Processing and Under-

standing of Signals (IPUS) architecture to process radar data using expert knowledge encapsulated by

computer. This was integrated into the Ptolemy environment as an IPUS domain. The IPUS domain

has a dynamic scheduler that reacts to events (knowledge) registered in global data structures (e.g.,,

blackboards) by local actors (e.g., knowledge sources). The IPUS domain reasons about knowledge at

different levels of abstraction arranged in a hierarchy. Various local actors (e.g. knowledge sources)

have been developed that can be reused in any IPUS application.

4.2 ALGORITHM REPRESENTATION

The representation problem in Ptolemy is mainly to raise the level of abstraction to the problem

level and to exploit visual syntaxes to manage complexity. Our contributions have included techniques

for improving the efficacy of visual syntaxes (higher-order functions), leveraging external tools (Mat-

lab and Mathematica, for example), and new models of computation.

4.2.1 Higher-Order Functions

We designed and implemented a higher-order functions (HOF) domain in Ptolemy that functions

as a subdomain of all other domains. This has had a major impact on the usability of visual (graphical)

system representations for large systems. The theory and major concepts are given in [14].

We have developed (with help from Thomson CSF) a variety of radar applications using these

HOF capabilities. We believe that the resulting system representations are much more intuitive and

32 of 72

maintainable than the traditional techniques based on multidimensional arrays (using up to seven

dimensions).

4.2.2 Leveraging External Tools

We created a link between Matlab and Ptolemy so that stars can have their functionality expressed

as Matlab functions and parameter values can be given as Matlab expressions. One major impact of

this is that the full suite of graphical signal display facilities in Matlab are now available under

Ptolemy. Moreover, quick algorithmic prototyping can now be done with an arbitrary mixture of Mat-

lab (imperative, matrix-oriented) code, and block-diagram (declarative, signal-oriented) code.

A similar link was created to Mathematica, which provided the ability to include symbolic manip-

ulations in parameter specifications. SDF demonstrations of both interface haves been released with

Ptolemy since version 0.6.

4.2.3 Communicating Processes Domain

We developed a "communicating processes" (CP) domain in Ptolemy. This domain has been used

extensively for high-level modeling of a wireless multimedia network. Unfortunately, we had to aban-

don this domain because it was built on top of the Sun Lightweight Process library, a fairly idiosyn-

cratic thread library, and porting to more modern thread libraries proved difficult.

4.2.4 Message Queue Domain

We completed a "message queue" (MQ) domain, which is an experimental domain that models

systems with highly dynamic topologies, such as telecommunications switch software.

4.3 SCHEDULING AND CODE GENERATION FOR SYNCHRONOUS DATAFLOW

Consistent with the RASSP focus on real-time signal processing in embedded systems, the

Ptolemy project made several key contributions in the translation of synchronous dataflow graphs into

33 of 72

embedded software (a technique sometimes called auto-coding). There are two key elements to this

problem: scheduling and code generation. We made major contributions in both.

4.3.1 Scheduling of Dataflow Graphs for Efficient Synthesis

A major result of this project is a sophisticated set of scheduling algorithms that jointly minimize

the size of a program and the size of data memory in embedded software generated from synchronous

dataflow graphs. These algorithms and their various ramifications have been reported in a number of

papers, two Ph.D. theses [73][76], and the results have been collected and published in a book [1].

4.3.2 Hierarchical Scheduling and Code Generation

We introduced a hierarchical scheduling framework that effectively mixes synthesized software

and VHDL models with simulations built in other Ptolemy domains. This permits, for example, the

environment to be modeled at a high level using one of the dataflow domains, while the system under

design is modeled using domains that synthesize to hardware and/or software, like the VHDL and

CG56 domain (the latter generates assembly code for Motorola DSPs).

We demonstrated this hierarchical scheduling on a heterogeneous platform consisting of a Sun

workstation running Solaris 2.4 and a programmable DSP on an S-bus card. These demonstrations

incrementally compile real-time subsystems for the DSP and embed them within a non-real-time pro-

cess running on the Unix workstation. Communication between them was asynchronous, using a

"peek/poke" mechanism to asynchronously read and write into the DSP memory. The demonstration

systems were acoustic modems (modems that transmit from an audio loudspeaker to an audio micro-

phone through air). Animated, interactive signal displays were produced on the workstation, enabling

better evaluation and understanding of the algorithms and their performance.

The hierarchical scheduler uses common semantic properties across domains to decouple the

designer-defined hierarchy (which is motivated by convenience and functional modularity) from parti-

34 of 72

tioning. That is, entirely disconnected subsystems can be implemented by the same hardware module

(a processor or an ASIC). This scheduling framework makes extensive use of earlier work in Ptolemy

with heterogeneous multiprocessor targets.

The hierarchical scheduling mechanism permits the use of highly optimized loop scheduling tech-

niques developed in our group. Without hierarchical scheduling, it was not possible to use these

because they had not been designed for use in parallel systems. Because the applications are multirate,

unless hierarchical scheduling is used, the generated code required considerably more memory than

was available on the DSP card. Moreover, without hiearchical scheduling, scheduling time was sub-

stantial (because a rather large precedence graph was constructed). Thus, we demonstrated that hierar-

chical scheduling enables modular use of scheduling optimizations, and we have shown that in

practical examples, considerable savings in embedded system memory are achieved. This work is

reported in [52] [53].

One of the fundamental issues encountered in this work is that dataflow models are not fundamen-

tally compositional. Two results are reported. First, a pragmatic approach that preserves all of the

advantages of current algorithms is to identify designs that happen to be compositional, and treat them

as such. A sufficient condition has been reported [51] [54] [72]. At a more fundamental level, we have

identified how dataflow models of computation can be modified to make them compositional. That

work is reported in [67], but this result remains theoretical.

4.3.3 Mixing Code Generation with Simulation

We have implemented in Ptolemy an elegant and simple architecture for compiling subsystems in

code generation domains and invoking them within simulation domains. There are a number of poten-

tial applications for this underlying infrastructure:

Incremental compilation. A compute-intensive subsystem in, say, the synchronous dataflow (SDF)

35 of 72

domain can be retargeted to CGC (code generation in C) and compiled to become a single monolithic

block in SDF. A similar capability is used to encapsulate a CG56 subsystem (which runs on the Motor-

ola DSP56000) into an SDF block.

Interfacing to foreign simulators. A VHDL subsystem can be analyzed to synthesize a fast customized

C interface to a commercial VHDL simulator.

Combining more than one code generation domain. For example, CGC can be mixed with CG56 to

produce programs that execute concurrently on a host workstation and a DSP card.

A fundamental problem is that dataflow systems cannot always be incrementally compiled, for the

same reason cited above: dataflow is not compositional. Collections of dataflow actors in a domain do

not necessarily have the same semantics as an individual actor. This problem is shared by many mod-

ern languages, including all synchronous languages, such as Esterei, Statecharts, and Signal. We give

fundamental results in [67], discussed further below.

4.3.4 Guided Migration: a Retargeting Tool

We developed a "retargeting tool" to be used to guide migration of Ptolemy-based designs from

one implementation technology to another. We demonstrated an interface for studying differences in

block libraries, and showed how it could be used to make the code generators for the Motorola

DSP56000 family processors and the Texas Instruments C50 family processors more compatible. For

example, Ptolemy contains demonstrations of different dual-tone multiple-frequency (DTMF) detec-

tors that have been retargeted from the SDF simulation domain to the CGC, CG56, and C50 code gen-

eration domains. We have also developed a program that recursively changes the domain of

hierarchical designs.

36 of 72

4.4 DATAFLOW AND KAHN PROCESS NETWORKS

Given the emphasis on dataflow modeling in signal processing circles, a natural part of the

Ptolemy project was to investigate the limits on expressiveness. Dynamic dataflow and Kahn process

networks are highly expressive models of computation, but pose some interesting implementation

challenges. We have developed solutions.

4.4.1 Dynamic Dataflow Scheduling

A dynamic dataflow scheduler should satisfy two requirements:

• Rl: If the dataflow graph does not contain a deadlock condition, the scheduler should not halt.
• R2: If the dataflow graph can be executed forever in bounded memory, then the scheduler should

be able to execute it forever in bounded memory.

The latter is particularly important for embedded systems.

In general, given a dataflow graph, it is undecidable whether the graph will deadlock (the halting

problem). It is also undecidable whether the graph can be executed in bounded memory (Joe Buck

showed in his 1993 Ph.D. thesis how to convert this problem to the halting problem). It is easy to

define a scheduling algorithm that satisfies Rl or R2, but no scheduling algorithm can always, in finite

time, guarantee both Rl and R2. This problem has appeared in various forms in much of the dataflow

architecture work.

In addition, the notion of an iteration in dataflow and process network domains has risen to the fore

as a critical (and difficult) theoretical issue. An unambiguous definition of an iteration is necessary for

control of a simulation, but even more importantly, for interaction between heterogeneous models of

computation. The so-called "synchronous" methods, for example, (like Statecharts and Esterel) cannot

be mixed (in a determinate way) with dataflow without an unambiguous definition of an iteration. An

iteration is easy to define for the synchronous dataflow (SDF) model of computation, but for dynamic

dataflow and process network models, the equivalent definition fails in some cases. In particular, an

37 of 72

iteration in SDF is a sequence of firings that returns the buffers in a dataflow graph to their original

state. It is undecidable whether such an iteration exists in a dynamic dataflow or process network

model.

Thus, our third condition is:

• R3: The scheduler should execute a graph in a sequence of well-defined and determinate "steps,"
where a step is set of actor firings.

We defined and implemented a robust and simple scheduler for the dynamic dataflow (DDF) domain in

Ptolemy. It provably satisfies all three conditions.

Often, the notion of a step as defined by the scheduler is not always the notion that the user wants

to see. We define an "iteration" to be one or more steps, where the number of steps is controlled by the

user. To permit a user to annotate a dataflow graph with the number of firings of a block that constitute

an "iteration," we implemented an extension to the GUI and the Target object to support "pragmas"

attached to blocks. A given Target (such as the DDFTarget) understands only certain pragmas. In the

DDF domain, the DDFTarget understands a pragma called "firingsPerlteration." Thus, when a user

specifies a value of this pragma for a particular block, an "iteration" has been defined. If no such value

is specified, then an "iteration" equals a "step," the scheduler default.

4.4.2 Process Networks Domain

We implemented a Process Networks (PN) domain, using first the Awesim threads package, then

the gthreads package, a POSDC thread implementation from Florida State University that is distributed

under the GNU General Library License. Process networks are a generalization of dynamic dataflow,

and raise a number of interesting theoretical and practical issues. These issues are resolved in the Ph.D.

thesis of Tom Parks [77], where it is shown that runtime scheduling algorithms exist that solve unde-

cidable problems. In particular, there are simple algorithms that will schedule a process network in

38 of 72

bounded memory if this is possible, without having to know a priori whether it is possible (this latter

question is undecidable).

4.5 MULTIDIMENSIONAL SIGNAL PROCESSING

Dataflow models match one-dimensional signal processing extremely well. Communication

between blocks (actors) is by sequences of data objects (tokens). These sequences easily represent

one-dimensional discrete-time signals. However, they do not so easily represent multidimensional sig-

nals. We developed a generalization to dataflow that better matches multidimensional signal process-

ing.

4.5.1 Multidimensional Dataflow

We have completed an experimental "multidimensional synchronous dataflow" domain (MDSDF),

where arcs that connect blocks represent not simple sequences of tokens, but rather two-dimensional

orderings of tokens. This domain is well matched to multidimensional signal processing and is capable

of representing a broader range of algorithms with static flow of control than the synchronous dataflow

model. The real potential, however, is in parallel computation, because the model of computation

exposes much more parallelism at a much finer granularity than the SDF model. The domain has a rich

enough set of stars to be usable for experimentation. This work is reported in [27][79].

4.5.2 Sampling Lattices

We developed a dataflow model for expressing multidimensional multirate signal processing sys-

tems sampled on arbitrary lattices. A multidimensional signal can be sampled in many different ways.

A straightforward extension of one-dimensional sampling results in the so-called rectangular sampling

structure, where the samples lie on a rectangular grid. However, a more general sampling structure is a

geometrical lattice; sampling lattices that are not rectangular can have many advantages in certain

applications. For example, a signal sampled on a nonrectangular lattice can have a lower sampling den-

39 of 72

sity than one sampled on an equivalent rectangular lattice. For real-time processing of multidimen-

sional signals, a lower sampling density means fewer samples to process in a given time interval. The

standard MDSDF model suffers from the inability to model multidimensional systems sampled on

arbitrary sampling lattices; hence, we give an extension of MDSDF that is capable of modeling such

systems. The model we give preserves the property of static, compile-time schedulability. However,

constructing such schedules requires the solution to some challenging problems. In particular, we

show that an augmented set of balance equations has to be solved simultaneously in the extended

model. The additional equations are quite different from the usual balance equations in SDF and

MDSDF; they involve computing so-called "integer volumes" of parallelepipeds. This computation

turns out to be an interesting number-theoretic problem, and we present several approaches for solving

it. Finally, we present a practical example of a video sampling structure conversion system to show the

usefulness of the generalized MDSDF model. This work is reported in the Ph.D. thesis of Praveen

Murthy [76].

4.5.3 Filter Design Issues

The design of multidimensional multirate signal processing systems, e.g., systems that change

video formats in nonseparable ways, often require application-specific design tools. For example, in

computing system parameters in multidimensional multirate systems can be simplified with a combi-

nation of computational geometry, integer matrix algebra, and state-space formulations. In multiple

dimensions, rate-changing operations are defined by a change in sampling grids. Sampling grids can

be represented as a set of basis vectors, which can be considered as the column vectors that make up a

sampling matrix. Mapping one sampling matrix onto another is a linear mapping represented by a

rational matrix, called a resampling matrix. We have shown how to design two-dimensional rate

changing systems (upsampler, filter, and downsampler in cascade) based on a geometric sketch of the

40 of 72

passband to retain. From the sketched region, we use computational geometric techniques to find the

minimal enclosing parallelogram using a linear time and linear space algorithm we have developed.

We then use the minimal enclosing parallelogram to compute the resampling matrix to perform the

sampling conversion using Chen and Vaidyanathan's approach. Then, we factor the resampling matrix

into the up-sampling and down-sampling matrices for the rate changer. The procedure will find the

best compression rate based on a parallelogram-shaped passband. The only other admissible geometry

is a hexagonal-shaped passband, which will always do at least as well as the parallelogram-shaped

passband. Generalizing this approach to multiple channels will enable the graphical design of two-

dimensional filter banks and wavelets. This work is reported in [35][36].

4.6 MULTIPROCESSOR TARGETS

Embedded signal processing systems often require more than one processor to meet real-time con-

straints. We have made some contributions in the area of automatic generation and optimization of

multiprocessor implementations.

4.6.1 Resynchronization

We developed a set of algorithms for minimizing the number of synchronized communications

between multiple processors in a multiprocessor system [25] [61] [62]. Synchronized communications

are considerably more expensive than unsynchronized communication, requiring testing and setting

semaphores. The algorithms are based on the observations that some synchronizations are redundant,

since it can be algorithmically demonstrated that the semaphores will always be in the desired state,

regardless of timing. These synchronizations can be removed. A second (complementary) method

selectively adds synchronization operations that will then cause other synchronization operations to

become redundant. We have proven that the problem is NP-hard, but have established a correspon-

dence with the well-studied set-covering problem, which provides a wealth of heuristic solutions. A

41 of 72

third method converts a feed-forward dataflow graph into a strongly connected graph in such a way as

to reduce synchronization overhead without slowing down the execution. All three methods can be

applied as post processing optimizations to the output of any static parallel scheduling algorithm. A

more recent extension of these algorithms considers latency constraints as well, giving provably opti-

mal algorithms. Results are described in [23][24] [25][61][62] [63].

4.6.2 Targeting a Network of Workstations (NOW) Cluster

We implemented a target in the CGC (code generation in C) domain that produces code for a

NOW (Network of Workstations) cluster. The generated code is built on top of the active message

abstraction, and hence is portable and potentially quite efficient. We have shown that the same set of

parallel executables can be run on an ordinary cluster of networked workstations as well as on the spe-

cially configured NOW. Surprisingly, initial tests resulted in faster runs on the ordinary cluster, but fur-

ther tuning has now achieved better performance on NOW. Currently, in the Berkeley NOW cluster,

active messages are implemented on top of TCP/IP, so there is considerable communication overhead.

However, as that facility matures, and this overhead is removed, we will be able to track it and improve

performance.

4.6.3 Mercury Raceway Architecture

We outlined the design of a tool for mapping a control and dataflow representation of a hard real-

time signal processing application onto a Mercury RACEway multicomputing system, and are con-

tinuing development with other funding. Low-level programming details would be hidden from the

programmer thereby shifting the design focus to performance issues. Graphical visualization and

manipulation capabilities will enable study of architectural trade-offs and optimizations. Tasks can be

scheduled and partitioned among the processors either manually or automatically. The tool will handle

most of the details involved in generating multiprocessor code, downloading the code to the target sys-

42 of 72

tem, and initializing the system for execution. Additional capabilities of the tool will allow extension

of the default routine library by the programmer and will allow interfacing with other hardware synthe-

sis and codesign tools. The tool will be implemented as a code generation target in Ptolemy.

4.7 CONTROL AND SIGNAL PROCESSING

In the early part of the project it concentrated on the computational aspects of signal processing

systems, and thus focused on models of computation such as dataflow that are particularly well suited.

Toward the end, the attention broadened to include control and sequential decision-making aspects of

system design. We pursued three approaches for combining control-oriented computation with data-

oriented computation: hierarchical concurrent finite-state machines, the synchronous/reactive model of

computation, and dynamically evaluated higher-order functions. This work is ongoing, with the parts

completed under this project being seminal. The following specific accomplishments are reported:

4.7.1 The FSM Domain

Signal processing systems perform intensive numeric computation, but they typically also have

sophisticated control logic for sequencing the computation tasks, switching among operation modes,

coordination, and configuration. Dataflow models are suitable for describing numeric computations.

The finite-state machine (FSM) is an intuitive model for describing control logic with a formal, well-

studied mathematical theory. But the basic FSM model, which is flat and sequential, is not suitable for

describing complex concurrent control. A common solution to this problem is hierarchical FSMs,

which extend the basic FSM model with hierarchy and concurrency. The Statecharts visual formalism

is an example of this approach.

We observe that FSM semantics, hierarchy, and concurrency are orthogonal semantic properties of

Statecharts. If we take away from Statecharts the transitions that cross hierarchy boundaries, we get a

simpler model in which FSM semantics can be cleanly separated from concurrency semantics. This

43 of 72

means that the basic FSM model can be mixed with the various concurrency models to get many mod-

els that are only slightly weaker than Statecharts. We call this new computational model "*charts,"

where the "*" is a wildcard representing various possible concurrency models.

We have created a preliminary implementation of this model in Ptolemy. Systems can be built by

hierarchically nesting FSMs and concurrency models. The synchronous dataflow model is particularly

attractive because when it is combined hierarchically with FSMs in certain ways, the combination is

far more expressive than either SDF or FSMs alone, even though the resulting system remains finite

state. Verification, synthesis, and optimization questions all remain decidable. We have developed a

preliminary visual editor for state transition diagrams, which is integrated into the Ptolemy GUI so that

a user can seamlessly traverse a hierarchical design that combines FSMs with dataflow block dia-

grams. At present we can simulate such a mixed-model system description. We plan to add the capabil-

ity to generate code from such systems. Preliminary results are reported in [2].

4.7.2 Synchronous/Reactive Modeling

The synchronous/reactive model of computation is popular (mostly in Europe) for the design of

real-time embedded systems. Examples of languages that use this model are Esterel, Lustre, Signal,

and Argos. A key property of the model is that events in concurrent modules are totally ordered with

respect to one another. This means that any two events are either simultaneous, or one unambiguously

precedes the other. This contrasts the dataflow approach, where events are partially ordered. A second

key property of SR languages is that simultaneous events are defined by a fixed-point equation. Fixed-

point theory guarantees the existence of a least fixed point under certain technical conditions.

Stephen Edwards completed his Ph.D. thesis [74], which describes a coordination language that

combines the synchronous/reactive model with the ability to assemble systems from heterogeneous

pieces (i.e., described in a variety of languages). It presents a mathematical framework for dealing with

44 of 72

zero-delay-induced paradoxes and presents a way to schedule systems with feedback. The abstract of

the thesis effectively summarizes the results:

"The need for new languages and paradigms for designing software for embedded computing
systems continues to grow as general-purpose microcontrollers become faster and cheaper.
Many of these systems need precise control over when things happen, yet few languages pro-
vide this facility. Another major challenge is handling the growing complexity of these sys-
tems.

In this dissertation, I present a new model of computation for embedded system software that
is the first to fuse precise control over timing with the ability to build systems from heteroge-
neous pieces. It combines the synchronous model of time (used in languages such as Esterel)
with the hierarchical heterogeneity of the Ptolemy system. Heterogeneity addresses the com-
plexity problem by allowing each subsystem to be designed using the best language.
My two major contributions are the formal semantics of this model and an efficient, predict-
able execution scheme for it. Dealing with zero-delay feedback loops, a side-effect of the zero-
delay assumption needed for synchrony, is the semantic challenge, and I solve it with a fixed-
point scheme that guarantees all systems are deterministic by construction. The execution
scheme I present is provably correct and eliminates run-time scheduling overhead by making
all decisions before the system is run.
I present results that show my model of computation is both efficient and can be used to imple-
ment practical systems. It is my hope that these ideas will be used in the future to make design-
ing complex time-critical embedded software easier and less error-prone."

SR languages have been used in control-intensive, safety-critical embedded system designs such as

aircraft and nuclear power-plant control. Their formal properties ensure determinacy and bounded

memory, and enable extensive verification. They appear to be an attractive model for certain kinds of

signal processing systems.

Stephen constructed an SR domain in Ptolemy that differs from standard SR languages by allow-

ing modules to be designed in some foreign model of computation. This is consistent with the "hierar-

chical heterogeneity" principle of Ptolemy. This domain has a number of practical and theoretical

challenges that result from this heterogeneity. In particular, the information-hiding principle used in

Ptolemy occludes certain important information about modules that is normally exploited in compiling

these languages. We have had to adapt the theory and compilation techniques to avoid violating this

information hiding.

45 of 72

Stephen developed a dynamic execution policy for the SR domain in Ptolemy and proved that it

always converges to the minimal fixed point. We have a theoretical bound on the number of steps

required to reach this fixed point (order N 2, where N is the number of actors in the graph) and have

been developing heuristics that fall well below this bound.

The first nontrivial application of the synchronous/reactive (SR) domain involved the interpreta-

tion of MIDI control signals to control sound synthesis. This application provided a suitable represen-

tative of systems that combine intensive signal processing with intensive control logic. A Midi

keyboard interfaced to the serial port of a Sparc 10 provided the control sequence. The Midi keyboard

was capable of providing highly complex and time-sensitive control signals, thus representing a

demanding system environment. The Synchronous Reactive domain and SDF (synchronous dataflow)

domains were used to create a synthesizer using the Sparc 10 to generate sound, and the keyboard to

trigger events.

4.7.3 Dynamically Evaluated Higher-Order Functions

We prototyped C++ and Tel interfaces to the dynamic higher-order functions mechanism, in

which we dynamically switch in a replacement block. This can be used to implement hierarchical state

machines (with no cross-hierarchy state transitions), and dynamically evaluated higher-order func-

tions. For example, we can implement conditionals (like if-then-else) within a dataflow actor as a HOF

by using the C++ interface.

4.7.4 Open Problems

Demonstration systems have been constructed where modules written in the synchronous/reactive

domain are embedded within both discrete event (DE) and synchronous dataflow (SDF) systems. We

have observed that while the use of SDF in this context may be adequate for hardware design, it has

serious inefficiencies for embedded software design. Moreover, the problems are fundamental to the

46 of 72

embedding of any technique where events are totally ordered (as in SR) within dataflow graphs, where

events are only partially ordered.

The nature of the problem is as follows: to preserve determinacy, the dataflow model does not per-

mit actors to test their input ports for the presence of a token, nor to take a branch depending on

whether a token is present. However, a controller often wants to monitor a signal, say an exception sig-

nal, and branch in response to that signal. In the SDF embedding, that signal must always be present,

using for example a Boolean FALSE to indicate that an exception has not occurred, and a Boolean

TRUE to indicate that an exception has occurred. For circuit design, where this signal may represent a

voltage on a wire, there is no inefficiency implied here. For software, however, the production and con-

sumption of a large number of FALSE tokens that indicate that nothing interesting is happening can be

quite costly. It is an ongoing effort in our group to attach reasonable semantics to this sort of combina-

tion.

4.8 FORMAL METHODS

The focus of the work on formal methods was to understand models of computation that can be

applied to system-level design of embedded signal processing systems. The major focus, therefore,

was on concurrent models and models that coexist well with huge computational loads and real-time

constraints.

4.8.1 A Semantic Framework for Comparing Models of Computation

In collaboration with Professor Alberto Sangiovanni-Vincentelli, we developed a denotational

framework (a "meta model") within which certain properties of models of computation can be under-

stood and compared. It describes concurrent processes in general terms as sets of possible behaviors.

Compositions of processes are given as intersections of their behaviors. The interaction between pro-

cesses is through signals, which are collections of events. A system is determinate if, given the con-

47 of 72

straints imposed by the inputs, there are exactly one or exactly zero behaviors. Each event is a value-

tag pair, where the tags can come from a partially ordered or totally ordered set. Timed models are

where the set of tags is totally ordered. Synchronous events share the same tag, and synchronous sig-

nals contain events with the same set of tags. Synchronous systems contain synchronous signals. Strict

causality (in timed systems) and continuity (in untimed systems) ensure determinacy under certain

technical conditions. The framework is used to compare certain essential features of various models of

computation, including Kahn process networks, dataflow, sequential processes, concurrent sequential

processes with rendezvous, Petri nets, concrete data structures, and discrete-event systems. Details are

reported in [44] [66].

4.8.2 Semantics of Discrete-Event Systems

In what could be a significant breakthrough, we followed up on a suggestion by Gerard Berry of

INRIA to develop a semantic model of discrete-event systems (such as that used in VHDL, Verflog,

and the discrete-event domain in Ptolemy). This model provides a complete metric space for signals in

such systems, thereby enabling the use of standard, well-established mathematical methods (most

notably the Banach fixed point theorem) to study issues such as determinacy. This work is included in

[66].

4.8.3 Semantics of Dataflow

We formally characterized the previously informal relationship between dataflow and Kahn pro-

cess networks. In KPNs, a "process" is a functional mapping from input sequences to output

sequences, where the function is constrained to be continuous in a complete partial order (CPO). The

CPO is based on the so-called "prefix order." Dataflow is a special case where the process is con-

structed as a sequence of "firings" where a firing is an atomic quantum of computation. The difficulty

in the past has been in formally defining the constraints on the firing function and the firing rules

48 of 72

(which indicate when a firing can occur) such that the resulting process is continuous. Continuity is

desirable because it ensures determinacy.

The firing rales can be characterized as a set of signals (tuples of sequences of tokens). When one

of the firing rules is a prefix of the input to the process, then the firing function "fires," consuming the

prefix and producing output tokens. The process is then recursively applied to the remaining input

tokens. If no two members of the firing rule set are "joinable" (meaning that they have an upper bound

in the CPO), and the firing function is continuous, then the process will be continuous. A key part of

the result is showing that the recursive definition of the process in terms of the firing functions is sensi-

ble and determinate. This can be done by defining a CPO on functions and showing that the process

can be given in terms of the firing function by a continuous functional (which maps functions into

functions).

These results are reported in [67].

4.8.4 Dataflow and Functional Languages

In [14], we reviewed a mathematical theory of dataflow based on partial orders, and connect this

theory to the functional languages and dataflow architectures communities. A central idea is that a

dataflow process consists of repeated applications of dataflow firings, and that this can be described by

the higher-order function F = map(/), where/is a function describing a single actor firing. The "map"

higher-order function applies f to a stream input. This notation formalizes a number of concepts that

have not been clear (at least not to us). We have determined, for example, that if "/' is "sequential" (in

a very technical sense), then "F" is sequential. Sequentiality implies determinacy of a network of such

functions. The next broader class of functions that we know of beyond the sequential functions, called

"stable functions," also imply determinacy. However, we have found a counterexample where F is not

stable even though/is. For this counterexample, F is not determinate. Thus, we believe that sequential

49 of 72

functions characterize, in a very fundamental sense, those functions whose composition abstracts to a

determinate function. The class of sequential functions, as it happens, is exactly the class implemented

by the Ptolemy Dynamic Dataflow (DDF) domain.

50 of 72

5. Software

The Ptolemy software serves as both a laboratory for experimentation and a mechanism for dis-

seminating results. During the course of the project, we completed three major software releases and

several minor ones. The major enhancements of each release are summarized below. Version numbers

begin with "0" to emphasize that this is research software, not a commercial product.

5.1 INFORMATION DISSEMINATION POLICY

We set up a Web site, http://ptolemy.eecs.berkeley.edu, that was used to distribute all software

(including source code) and documentation (in PostScript, HTML and PDF, together with updated

summary sheets, answers to frequently asked questions, a quick tour, and a tutorial). We set up a

Usenet news group called comp.soft-sys.ptolemy and a mailing list ptolemy-hack-

ers@ptolemy.eecs.berkeley.edu. Postings to the mailing list are cross-posted to the news group. Post-

ings are archived and searchable from our World Wide Web site.

5.2 PTOLEMY 0.5 (FEBRUARY 1994)

5.2.1 Major New Features

Major features introduced in the 0.5 version include:

Greatly improved documentation (see below).
Extensible, animated, interactive GUI based on Tcl/Tk.
The boolean dataflow domain.
VHDL code generation.
Silage code generation.
Fast discrete-event scheduling.
A communicating processes domain for event-driven simulation of hardware systems.
Fixed-point simulation.
Matrix data types and functional blocks.

5.2.2 Documentation

With the objective of making Ptolemy more usable both within Berkeley and outside, we com-

51 of 72

pletely rewrote the documentation. The 0.4.1 version had been written using troff. The 0.5 version was

converted to use FrameMaker, and used a more tutorial, more narrative style with extensive use of

graphics. The complete manual, called "The Almagest," is divided into four volumes:

• The User's Manual
• The Star Atlas
• The Programmer's Manual
• The Kernel Manual

The first two are intended for users who will not be writing code to extend the system. The third is for

users who will be writing new functional blocks (called stars), and the fourth is for users who will be

extending the system in more fundamental ways, such as by adding new models of computation or new

synthesis tools.

The User's manual and Kernel manual have both been converted to HTML for on-line, hypertext

access. Also providing improved on-line documentation, two self-guided tours of Ptolemy are distrib-

uted with the system:

• A "Quick Tour" takes the user through the features of the more mature Ptolemy domains.
• A "What's New" tour guides the user through an overview of what has been added in each new

version of Ptolemy.

5.3 PTINY 0.5 (APRIL 1994)

The "Ptiny" release is a demonstration subset that is easy to install and requires much less disk

space than the full system. A number of our regular users started with this version. Moreover, this ver-

sion is designed to fully support our instructional uses of Ptolemy.

5.4 PTOLEMY 0.5.1 (SEPTEMBER 1994)

5.4.1 Major New Features

Major features introduced in the 0.5.1 version include:

A Matlab interface.
• Higher-order functions.

52 of 72

• Multidimensional synchronous dataflow.
• Initializable delays.

5.5 PTOLEMY 0.5.2 (MAY 1995)

The Ptolemy 0.5.2 release, which consist of approximately 2000 files containing 300,000 lines and

8 Mb of source code, was distributed in May of 1995.

5.5.7 Major New Features

This was an incremental release containing three major features:

• Greatly enhanced simulation speed,
• A library of interactive graphical widgets, and
• Support for higher-order functions in all domains.

5.5.2 Platforms

Internally developed: Sun Sparc (SunOS and Solaris), HP (HP/UX), and SGI (Irix).

Contributed by outside users: Dec Alpha (Ultrix), PC (Linux), IBM RS/6000 (AIX), and Power

PC (AIX).

Additional external ports: DecStation (Ultrix) and PC (NetBSD).

5.6 PTOLEMY 0.6 (APRIL 1996)

The Ptolemy 0.6 release consists of approximately 3000 files containing 400,000 lines and 9 Mb of

source code (compressed).

5.6.1 Domains

• Multidimensional synchronous dataflow, MDSDF.
• New functional VHDL domain.
• Process networks, PN.
• Extension of Boolean dataflow (BDF) to integer-controlled dataflow (IDF).

5.6.2 Schedulers

• Loop scheduler.
• Dynamic dataflow scheduler that maintains bounded memory.

53 of 72

• Partitioning SDF applications into multiple VHDL hardware modules.
• Buffer-optimal loop scheduler for acyclic SDF graphs.
• Latency constrained resynchronization (LCR) algorithm for 2 processor systems that is capable of

handling delays.

5.6.3 Automatic Code Generation

• Synthesis of parallel code for network of workstations (NOW).
• Multi-lingual code generation (C-based wormholes).
• Tunable VHDL code generation (sequential or synthesizable).
• Incrementally compiled code generation subsystems.

5.6.4 Visualization

• Interfaces to a freely available graph visualization program: printDot - outputs a galaxy hierarchy
in dotty format, printClusterDot - outputs the galaxy in it's clustered form.

• Tcl/Tk versions of Gantt chart and logic analyzer.
• Interface to Tycho (see below).

5.6.5 Ptolemy Infrastructure

Tel parameter expression parser.
Ptolemy Makefile redesign.
Matlab Tel interface.
Tcl/Mathematica interface.
First-cut at design-methodology management.
Code generation wormholes.
Portable scheduler file format.
Heterogeneous code generation (VHDL, 56K, C).
C++ documentation generation system.
HTML documentation of Ptolemy stars.
File datatype.
Automatic generation of Ptcl scripts from block diagrams.
New iterator classes for various kernel classes.
Itcl incorporation, an object-oriented extension to Tcl/Tk.
Script for creating custom versions of Ptolemy.

5.6.6 Platforms

Platforms that we distribute binaries for: Solaris2.4, HPUX-10.01, SunOS4.1.3.

Platforms that Ptolemy 0.6 has been compiled for: IBM AIX3.2.5, DEC Alpha OSF/1 V3.2,

FreeBSD 2.1-Stable, Irix5.3, Irix6.x, HPUX9.X, Linux Slackware3.0, Solaris2.5, HPUX10.01, HP CC.

54 of 72

5.7 PTOLEMY 0.7 (JUNE 1997)

Ptolemy 0.7 and Tycho 0.2 were released on June 13th, 1997.

5.7.1 Domains

• FSM — finite state machines
• SR — synchronous/reactive.

5.7.2 Schedulers

• An optimized acyclic loop scheduler. This scheduler does joint code/data minimization; it gener-
ates single appearance schedules optimized for buffer memory usage. It is useful in code genera-
tion, especially in assembly language code generation for embedded signal processors which have
limited program and data memory.

5.7.3 Code Generation

Code generation for the TIC50 DSP, CGC50.
UltraSparc VIS (visual instruction set) code generation.
Real-time CD-quality audio on Ultrasparc workstations.
Synthesis of C code that is dynamically loaded into Tycho.
Improved user interfaces (based on Tycho) for synthesized C programs.
Visualization of implementation costs.

5.7.4 Visualization

• Integrated HTML documentation of functional blocks.
• Tycho 0.2 (see below).

5.7.5 Ptolemy Infrastructure

• A revamped type system.
• Retargeting tool.
• Scripted higher-order functions.

5.7.6 Platforms

We distribute binaries for Solaris2.5.1, Solaris 2.4, HPUX10.20, HPUX9.X, SunOS4.1.3, and DEC

Alpha OSF1. Ptolemy has been compiled for a number of other platforms by users outside Berkeley.

5.7.7 Documentation

The User's Manual is about 500 pages with about 440 figures, tables and equations. The User's

55 of 72

Manual is available in HTML, PDF and PostScript from the Ptolemy Web page. In addition, there is a

Programmer's Manual and Kernel Manual.

5.8 TYCHO

Tycho is an object-oriented syntax manager with an underlying heterogeneous technical rationale.

It provides a number of editors and graphical widgets in an extensible, reusable framework. The edi-

tors for textual syntaxes are modeled after emacs in the sense the emacs key bindings are used when-

ever possible. However, they make more extensive use of menus, windows, and dialogs than emacs.

Also, the intent is that visual editors and visualization tools will be fully integrated, something that

would be difficult to accomplish with emacs in its current form. Editors for visual syntaxes will be

more diverse. The system documentation is integrated, using a hypertext system compatible with the

World Wide Web.

Tycho was originally conceived for use with Ptolemy system, but it has grown into a system that is

useful on its own. Tycho has been used extensively in the development of the Tycho software itself.

Tycho is written primarily in ltd, also called [incr Tel], developed by Michael McLennan of

AT&T. Itcl is an object-oriented extension of Tel, a "tool command language" written by John Ouster-

hout of U.C. Berkeley, now under continued development at Sun Microsystems. The window toolkit

Tk and its object-oriented extension Itk are also used extensively.

5.8.1 Objectives

• To build a genuinely object-oriented user interface, where multiple visual syntaxes can be com-
bined, and application-specific visual syntaxes can be constructed.

• To provide an extensible framework for experimentation with visual syntaxes, where mundane
tasks such as documentation, font management, color management, and dialogs with the user

are built using a shared, common infrastructure.

• To extend the non dogmatic nature of the Ptolemy kernel (which supports multiple semantic mod-
els) to the user interface (which will support multiple syntactic models).

• To experiment with design visualization, broadening the perspective beyond a schematic or block-

56 of 72

diagram perspective of Ptolemy, and exploring new visual and mixed visual/textual syntaxes for
design representation and understanding.

• To leverage off work in the Tcl/Tk community to get portable (Unix, Microsoft Windows PCs and
Apple Macintoshes) code.

• To design a sophisticated, extensible, interactive documentation system.
One of the key principles in Tycho is that anything can have a hyperlink to anything else. Docu-

mentation will have links to source code, and vice versa. Visual editors will have links to textual edi-

tors. And specialized displays can be created for any form of data. These displays, of course, are also

connected by hyperlinks.

An interim mechanism is provided where Tycho forms a subsystem within the much older visual

editor for Ptolemy called "pigi" (which stands for Ptolemy interactive graphical interface).

5.8.2 Tycho 0.1 Release (March 1996)

Tycho 0.1 was released with Ptolemy 0.6. It was still a very preliminary system. It included:

Visual editors and displays for various types of graphs.
Syntax-sensitive text editors for ltd, HTML, C, C++, Ptlang (Ptolemy star) files, Java and Esterel.
Interactive shells communicating with Tel, Matlab, Mathematica.
Graphical editors
Integrated, HTML-based documentation.
Indexes and index browsers.
A family of dialog windows.
Context sensitive spell checker.
Font and color management system.
Error handling with a stack display.
Auto-save.
Some elementary data structures: Stack, CircularList, Graph, DirectedAcyclicGraph, Forest.

5.8.3 Tycho 0.1.1 Release (December 1996)

Tycho 0.1.1 was released on December 17, 1996. This was an interim release that improved per-

formance and added many new features. Most notably:

• View/Display er architecture.
• Slate object for managing composite graphical objects.

57 of 72

Popup menus (to complement pre-existing pull-down menus)
Menu-bar object.
Glimpse Index Browser.
Graphical Itcl Class browser
Preferences manager
Exec class which can be used to run remote programs like make.
Print dialog.
Java syntax sensitive editor.
Windows NT port.
Hierarchical indexes.

5.8.4 Tycho 0.2 Release (June 1997)

Tycho 0.2 was released with Ptolemy 0.7. Significant new features:

Java/Tycho interface
Compilation and dynamic loading of C modules at runtime.
Improved preferences manager.
An interface to C,C++ and Java compilers.
Interfaces to SCCS and RCS revision control systems.
An interface to the Glimpse index browser, which can rapidly search large directory trees.
A graphical Tel profiler.
A source code documentation system and browser.
A Tycho Information Model (TIM) architecture.
A time-slice scheduler for dynamically linked C modules.

5.9 TMATH

Ptolemy 0.7 comes with an interface to Matlab 4.2 and Mathematica 2.2, but Ptolemy must be

recompiled for a user to access the interface. Since the 0.7 release, Brian Evans (UT Austin) has

upgraded the interface to be compatible with Matlab 4.2 and 5.0 as well as Mathematica 2.2 and 3.0,

which will likely be released in the next version of Ptolemy and as a patch to the current version. In the

meantime, Brian has spun off the interface to Matlab and Mathematica from C++ and Tel as a separate

tool called TMath (version 0.2).

The TMath package is an extension to Tel that allows Tel 7.x to control Matlab and Mathematica

processes and to evaluate Matlab and Mathematica commands, either through scripts or interactive

58 of 72

sessions. It works with Matlab 4.2 and 5.0 as well as Mathematica 2.2 and 3.0. TMath provides:

• two new Tel commands matlab and mathematica,
• a framework for registering Tel commands implemented as C++ methods,
• C++ interfaces for Matlab and Mathematica, and

C++ objects to control multiple Matlab and Mathematica processes. TMath will work on all of the

architectures supported by the Ptolemy software environment. For more information about TMath, see

http://www.ece.utexas.edu/~bevans/projects/tmath.html

59 of 72

6. Acknowledgments

6.1 PARTICIPANTS AT BERKELEY

6.1.1 Principal Investigator

• Edward A. Lee

6.1.2 Professional Staff

Diane Chang
Kevin Chang
Christopher Hylands
Alan Kamas

Mary Stewart

6.1.3 Post-Doctoral Researchers

Brian L. Evans
Alain Girault
Seehyun Kim
Praveen Murthy
Rajagopal Nagarajan
John Reekie
Dick Stevens (from NRL)
Juergen Teich

6.1.4 Graduate Students

Shuvra S. Bhattacharyya
Wan-Teh Chang
Michael Chen
William Chen
Cliff Cordeiro
John Davis, II
Stephen Edwards
Ron Galicia
Mudit Goel
Michael Goodwin
Sangjin Hong
Asawaree Kalavade
Joel King
Allen Lao
Bilung Lee

60 of 72

William Li
Jie Liu
Praveen K. Murthy
Thomas M. Parks
Jose Luis Pino
Farhana Sheikh
Sun-Inn Shih

Neil Smyth
S. Sriram
Patrick J. Wamer
Michael C. Williamson
Mei Xiao
Yuhong Xiong

6.1.5 Undergraduate Students

• Raza Ahmed
• Sunil Bhave
• Kang Ngee Chia
• Steve X. Gu
• Luis Gutierrez
• Farhad Jalilvand
• Yu Kee Lim
• Siamak Modjtahedi
• Matthew Tavis
• William Tsu

6.2 PARTICIPANTS OUTSIDE BERKELEY

We would like to give special thanks to the following people outside our group who contributed in

significant ways to the results reported here:

Egbert Ammicht (AT&T)
Neal Becker (Comsat)
Shuvra S. Bhattacharyya (Hitachi)
Joseph T. Buck (Synopsys)
Gyorgy Csertan (Technical University of Budapest)
Dan Ellis (MIT Laboratory for Computer Science)
Pravil Gupta (Compass Design Automation)
Soonhoi Ha (Seoul National University, Korea)
Alexander Kurpiers (TU. Darmstadt, Germany)
Tom Lane (Structured Software Systems)

61 of 72

Douglas Niehaus (Univ. of Kansas)
Eric Pauer (Lockheed Sanders)
Sunil Samel (MEC, Belgium)
Christopher Scanneil (NRL)
Richard Tobias (White Eagle Systems Technology)
Stefan De Troch (IMEC)
Tom Truman (U.C. Berkeley)
Alberto Vignani (Fiat) Xavier Warzee (Thomson CSF)
Joseph M. Winograd (Boston University)
Fritz Heinrichmeyer (FernUniverstitat in Hagen, Germany)
Uwe Trautwein (Technical University of Ilmenau, Germany)

Xavier Warzee (Thomson CSF)

6.3 CORPORATE SUPPORT

6.3.1 Sponsors

The following organizations have contributed additional financial support for the Ptolemy project:

the State of California MICRO program
The Alta Group of Cadence Design Systems
Dolby Laboratories
Hitachi
LG Electronics
Lockheed Martin ATL
Motorola
NEC
Philips
Rockwell
the Semiconductor Research Corporation (SRC)

6.3.2 Assistance With Software

The following organizations have helped, particularly by evaluating alpha releases and contribut-

ing ports to platforms that we do not have at Berkeley:

Ericsson
HDA
Hewlett-Packard
Lincoln Labs
Meta-Software
MIT Lincoln Labs

62 of 72

Ncube

Structured Software Systems
Technische Universitaet Ilmenau, Germany
Thomson CSF
Thomson Multimedia
Univ. of Maryland Baltimore County
Univ. of Texas, Austin
White Eagle Systems Technology, Inc.

63 of 72

7. Publications

7.1 BOOKS AND CHAPTERS

[1] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, Software Synthesis from Dataflow Graphs, Klu-
wer Academic Publishers, Norwell, Mass, 1996.

[2] W.-T. Chang, A. Kalavade, and E. A. Lee, "Effective Heterogeneous Design and Cosimulation,"
chapter in Hardware/Software Co-design, G. DeMicheli and M. Sami, eds., NATO ASI Series
Vol. 310, Kluwer Academic Publishers, 1996. Also presented at NATO Advanced Study Institute
Workshop on Hardware/Software Codesign, Lake Como, Italy, June 18 — 30, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/effective)

7.2 JOURNAL ARTICLES

[3] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, "Generating Compact Code from Dataflow
Specifications of Multirate Signal Processing Algorithms," IEEE Trans, on Circuits and Systems
I: Fundamental Theory and Applications, vol. 42, no. 3, pp. 138-150, March 1995.

[4] S.S. Bhattacharyya and E. A. Lee, "Memory Management for Dataflow Programming of Multi-
rate Signal Processing Algorithms," IEEE Trans, on Signal Processing, vol. 42, no. 5, May 1994.
(http://ptolemy.eecs.berkeley.edU/papers/buffering.ps.Z)

[5] S. S. Bhattacharyya and E. A. Lee, "Looped Schedules for Dataflow Descriptions of Multirate
Signal Processing Algorithms," Formal Methods in System Design, No. 5, No. 3, December,
1994. (updated from Technical Report, May 21,1993).
(http://ptolemy.eecs.berkeley.edU/papers/loop_schedules.ps.Z)

[6] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "APGAN and RPMC: Complimentary Heuris-
tics for Translating DSP Block Diagrams into Efficient Software Implementations," Journal of
Design Automation for Embedded Systems, Vol. 2, No. 1, pp. 33-60, January, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/96/daem-apgan)

[7] S. S. Bhattacharyya, S. Sriram, and E.A. Lee, "Optimizing Synchronization in Multiprocessor
DSP Systems," IEEE Tr. on Signal Processing, Vol. 45, No. 6, June 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/synchronization/)

[8] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems," Int. Journal of Computer Simulation, special issue on
"Simulation Software Development," vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.berke-
ley.edu/papers/JEurSim).

[9] W.-T. Chang, S.-H. Ha, and E. A. Lee, "Heterogeneous Simulation — Mixing Discrete-Event
Models with Dataflow," RASSP special issue of the Journal on VLSI Signal Processing, Vol. 13,
No. 1, January, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/96/heterogeneity)

[10] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, "Design of Embedded Sys-
tems: Formal Models, Validation, and Synthesis," Proceedings of the IEEE, Vol. 85, No. 3, March
1997. (http://ptolemy.eecs.berkeley.edu/papers/97/codesign)

64 of 72

[11] S. Ha and E. A. Lee, "Compile-Time Scheduling of Dynamic Constructs in Dataflow Program
Graphs," IEEE Trans, on Computers, Vol. 46, No. 7, July 1997.

[12] A. Kalavade and E. A. Lee, "Complexity Management in System-Level Design," Journal of VLSI
Signal Processing Systems, Vol. 14, No. 2, November 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/jvlsi-dmm)

[13] A. Kalavade and E. A. Lee, "The Extended Partitioning Problem: Hardware/Software Mapping
and Implementation-Bin Selection," Journal of Design Automation for Embedded Systems, vol. 2,
March 1997, pp. 125-163.
(http://ptolemy.eecs.berkeley.edu/papers/daem-partitioning-95)

[14] E. A. Lee and T. M. Parks, "Dataflow Process Networks," Proceedings of the IEEE, vol. 83, no. 5,
pp. 773-801, May, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

[15] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, "Combined Code and Data Minimization for
Synchronous Dataflow Programs," Journal of Formal Methods in System Design, July 1997
(http://ptolemy.eecs.berkeley.edu/papers/jointCodeDataMinimize)

[16] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, "Software Synthesis for DSP Using Ptolemy," Journal
on VLSI Signal Processing, vol. 9, no. 1, pp. 7-21, Jan., 1995.
(http://ptolemy.eecs.berkeley.edu/papers/jvsp_codegen)

[17] S. Sriram and E. A. Lee, "Determining the Order of Processor Transactions in Statically Sched-
uled Multiprocessors," Journal of VLSI Signal Processing, Vol. 15, No. 3, pp. 207-220, March
1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/order)

7.3 CONFERENCE PAPERS

[18] G. Arslan, B. L. Evans, F. A. Sakarya, and J. L. Pino, "Performance Evaluation and Real-Time
Implementation of Subspace, Adaptive, and DFT Algorithms for Multi-Tone Detection," Proc.
Int. Conf. on Telecommunications, Istanbul, Turkey, April 15-17, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/dtmf_ict)

[19] R. H. Bamberger, B. L. Evans, E. A. Lee, J. H. McClellan, and M. A. Yoder, "Integrating Layout,
Analysis, and Simulation Tools in Electronic Courseware for Teaching Signal Processing,"
Invited Paper, Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, May 8-12,
1995, Detroit, MI, pp. 2873-2876.
(http ://ptolemy.eecs .berkeley.edu/papers/education)

[20] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Converting Graphical DSP Programs into
Memory-Constrained Software Prototypes," Proc. of IEEE Int. Workshop on Rapid Systems Pro-
totyping, Chapel Hill, NC, June 7-9,1995.
(http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo/)

[21] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Optimal Parenthesization of Lexical Orderings
for DSP Block Diagrams," Proc. IEEE Workshop on VLSI Signal Processing, Osaka, Japan, Octo-
ber 16-18, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo/)

65 of 72

[22] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Software Synthesis for Synchronous Data-
flow," Proc. International Conference on Application Specific Systems, Architectures, and Proces-
sors, July, 1997, invited paper.
(http://ptolemy.eecs.berkeley.edu/papers/97/software)

[23] S.S. Bhattacharyya, S. Sriram, and E. A. Lee, "Minimizing Synchronization Overhead in Stati-
cally Scheduled Multiprocessor Systems," Proc. of IEEE Int. Conference on Application Specific
Array Processors, July 24-26, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/synchOpt/)

[24] S.S. Bhattacharyya, S. Sriram, and E. A. Lee, "Latency-Constrained Resynchronization for Mul-
tiprocessor DSP Implementation," Proc. ASAP Conference, Chicago, August 19-21, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/resync)

[25] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, "Self-Timed Resynchronization: A Post-Optimiza-
tion for Static Multiprocessor Schedules," Proc. IPPS, April 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/parallel)

[26] J. T. Buck, "A Dynamic Dataflow Model Suitable for Efficient Mixed Hardware and Software
Implementations of DSP Applications," Proc. of Codes/CASHE 94, Third International Workshop
on Hardware/Software Codesign, Grenoble, France, Sept. 22-24, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/DDF_codesign.ps.Z)

[27] M. J. Chen and E. A. Lee, "Design and Implementation of a Multidimensional Synchronous
Dataflow Environment," Invited Paper, Proc. of IEEE Asilomar Conf. on Signals, Systems, and
Computers, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/mdsdf_asilomar.ps.Z)

[28] W. Chen, H. J. Reekie, S. Bhave, and E. A. Lee, "Native Signal Processing on the UltraSparc in
the Ptolemy Environment," Proc. of the 30th Annual Asilomar Conference on Signals, Systems,
and Computers, November 1996.
(http ://ptolemy.eecs .berkeley.edu/papers/96/ultrasparc/)

[29] K. Chiang, B. L. Evans, W. T. Huang, F. Covet, E. A. Lee, H. J. Reeky, D. G. Messerschmitt, and
S. Sister, "Real-Time DSP for Sophomores," Proc. IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, Atlanta, GA, May 7-10, 1996, vol. 2, pp. 1097-1100.
(http://ptolemy.eecs.berkeley.edu/papers/96/realTimeCourse)

[30] B. L. Evans, D. R. Firth, K. D. White, and E. A. Lee, "Automatic Generation of Programs That
Jointly Optimize Characteristics of Analog Filter Designs," Proc. of European Conference on Cir-
cuit Theory and Design, August 27-31, 1995, Istanbul, Turkey, pp. 1047-1050. (http://
ptolemy.eecs.berkeley.edu/papers/filter_design_ecctd95 .ps.Z)

[31] B. L. Evans, S. X. Gu, A. Kalavade, and E. A. Lee, "Symbolic Computation in System Simulation
and Design," Invited Paper, Proc. ofSPIE Int. Sym. on Advanced Signal Processing Algorithms,
Architectures, and Implementations, July 9-16,1995, San Diego, CA, pp. 396-407.
(http://ptolemy.eecs.berkeley.edU/papers/spie95symbcomp.ps.Z)

[32] B. L. Evans, S. X. Gu, and R. H. Bamberger, "Interactive Solution Sets as Components of Fully
Electronic Signals and Systems Courseware," Proc. of IEEE Asilomar Conf. on Signals, Systems,

66 of 72

and Computers, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994, pp. 1314-1319.
(http://ptolemy.eecs.berkeley.edu/papers/education)

[33] B. L. Evans, A. Kamas, and E. A. Lee, "Design and Simulation of Heterogeneous Systems Using
Ptolemy," First Annual Rapid Prototyping of Application Specific Signal Processors (RASSP)
Conference,.Arlington, VA, Aug. 15-18, 1994, pp. 97-105.
(http ://ptolemy.eecs .berkeley.edu/papers/heterogeneous)

[34] B. L. Evans and J. H. McClellan, "Algorithms for Symbolic Linear Convolution," Proc. of IEEE
Asilomar Conf. on Signals, Systems, and Computers, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994,
pp. 948-953.
(http://ptolemy.eecs.berkeley.edu/papers/symbolic_convolution)

[35] B. L. Evans, J. Teich, and C. Schwarz, "Automated Design of Two-Dimensional Rational Deci-
mation Systems," Proc. of IEEE Asilomar Conf. on Signals, Systems, and Computers, Oct. 31 -
Nov. 2, Pacific Grove, CA, 1994, pp. 498-502.
(http://ptolemy.eecs.berkeley.edu/papers/decimator_design)

[36] B. L. Evans, J. Teich, and T A. Kalker, "Families of Smith Form Decomposition to Simplify
Multidimensional Filter Bank Design," Proc. of IEEE Asilomar Conf. on Signals, Systems, and
Computers, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994, pp. 363-367.
(http://ptolemy.eecs.berkeley.edu/papers/mD_filter_bank_design)

[37] C. Hylands, E. A. Lee, and H. J. Reekie, "The Tycho User Interface System," to be presented at
the 5th Annual Tcl/Tk Conference '97, Boston, Massachusetts, July, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/tcltk-97/)

[38] A. Kalavade and E. A. Lee, "Manifestations of Heterogeneity in Hardware/Software Codesign,"
Proc. of IEEE Design Automation Conference, San Diego, CA, June, 1994, pp. 437-438
(http://ptolemy.eecs.berkeley.edu/papers/codesign)

[39] A. Kalavade and E. A. Lee, "A Global Criticality / Local Phase Driven Algorithm for the Con-
strained Hardware/Software Partitioning Problem," Proc. of Codes/CASHE 94, Third IEEE Inter-
national Workshop on Hardware/Software Codesign, Grenoble, France, Sept. 22-24, 1994, pp 42-
48.
(http://ptolemy.eecs.berkeley.edu/papers/codesign)

[40] A. Kalavade and E. A. Lee, "The Extended Partitioning Problem: Hardware/Software Mapping
and Implementation-Bin Selection," Proc. of IEEE Int. Workshop on Rapid Systems Prototyping,
Chapel Hill, NC, June 7-9,1995.
(http ://ptolemy.eecs .berkeley.edu/papers/extended_partitioning/)

[41] A. Kalavade, J. L. Pino, and E. A. Lee, "Managing Complexity in Heterogeneous Specification,
Simulation, and Synthesis," Invited Paper, Proc. of IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, May 8-12, 1995, Detroit, MI, pp. 2833-2836.
(http://ptolemy.eecs.berkeley.edu/papers/managing_complexity)

[42] K. Khiar and E. A. Lee, "Modeling Radar Systems Using Hierarchical Dataflow," Proc. of IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Detroit, MI, May 8-12, 1995, pp. 3259-
3262.
(http://ptolemy.eecs.berkeley.edU/papers/Radarsimu.ps.Z)

67 of 72

[43] E. A. Lee, "Computing and Signal Processing: An Experimental Multidisciplinary Course", Proc.
of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. VI, pp. 45-48, Adelaide,
Australia, April, 1994.
(http://ptolemy.eecs.berkeley.edu/papers/education)

[44] E. A. Lee, and A. Sangiovanni-Vincentelli, "Comparing Models of Computation," Proc. of
ICCAD, San Jose, CA, Nov. 10-14, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/comparing/)

[45] R. Mani, H. S. Nawab, J. M. Winograd, and B. L. Evans, "Integrated numeric and symbolic signal
processing in a heterogeneous design environment," Proc. SPIE Int. Sym. on Advanced Signal
Processing Algorithms, Architectures, and Implementations, Denver, CO, August 12-15, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/ipusPtolemy/)

[46] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, "Minimizing Memory Requirements For
Chain-Structured Synchronous Dataflow Programs," Proc. of IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. II, pp. 453-456, Adelaide, Australia, April, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/chainmemman.ps.Z)

[47] P. K. Murthy and E. A. Lee, "Optimal Blocking Factors for Blocked, Non-Overlapped Multipro-
cessor Schedules," Invited Paper, Proc. of IEEE Asilomar Conf. on Signals, Systems, and Comput-
ers, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/blocFac.ps.Z)

[48] P. K. Murthy and E. A. Lee, "An Extension of Multidimensional Synchronous Dataflow to Handle
Arbitrary Sampling Lattices," Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
Atlanta, GA, May 7-10,1996, vol. 6, pp. 3306-3309.
(http://ptolemy.eecs.berkeley.edu/papers/genMdsdf)

[49] T. M. Parks and E. A. Lee, "Non Preemptive Real-Time Scheduling of Dataflow Systems," Proc.
of IEEE Int. Conf on Acoustics, Speech, and Signal Processing, Detroit, MI, May 8-12,1995, pp.
3235-3238.
(http://ptolemy.eecs.berkeley.edu/papers/real_time)

[50] T. M. Parks, J. L. Pino, and E. A. Lee, "A Comparison of Synchronous and Cyclo-Static Data-
flow," Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
October 29 - November 1, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/csdfVSsdf)

[51] J. L. Pino, S. S. Bhattacharyya and E. A. Lee, "A Hierarchical Multiprocessor Scheduling System
for DSP Applications," Proc. IEEE Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, October 29 - November 1, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched-asilomar-95)

[52] J. L. Pino and E. A. Lee, "Hierarchical Static Scheduling of Dataflow Graphs onto Multiple Pro-
cessors," Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Detroit, MI, May
8-12, 1995, pp. 2643-2646.
(http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched)

[53] J. L. Pino, T. M. Parks, and E. A. Lee, "Automatic Code Generation for Heterogeneous Multipro-
cessors," Proc. of IEEE Int. Conf on Acoustics, Speech, and Signal Processing, vol. II, pp. 445-

68 of 72

448, Adelaide, Australia, April, 1994.
(http://ptolemy.eecs.berkeley.edu/papers/autoMultiCodeGen)

[54] J. L. Pino, T. M. Parks and E. A. Lee, "Mapping Multiple Independent Synchronous Dataflow
Graphs onto Heterogeneous Multiprocessors," Proc. of IEEE Asilomar Conf. on Signals, Systems,
and Computers, Pacific Grove, CA, Oct. 31 - Nov. 2, 1994.
(http://ptolemy.eecs.berkeley.edu/papers/multiIndepGraph)

[55] J. L. Pino, M. C. Williamson, and E. A. Lee, "Interface Synthesis in Heterogeneous System-Level
DSP Design Tools," Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Atlanta,
GA, May 7-10, 1996, vol. 2, pp. 1268-1271.
(http://ptolemy.eecs.berkeley.edu/papers/interfaceSynthesis)

[56] C. Schwarz, J. Teich, A. Vainshtein, E. Welzl, and B. L. Evans, "Minimal Enclosing Parallelo-
gram with Application," ACM Sym. on Computational Geometry, June 5-7, 1995, Vancouver,
Canada, (http://ptolemy.eecs.berkeley.edu/papers/decimator_design)

[57] S. Sriram and E. A. Lee, "Statically Scheduling Communication Resources in Multiprocessor
DSP Architectures," Invited Paper, Proc. of IEEE Asilomar Conf. on Signals, Systems, and Com-
puters, Oct. 31 - Nov. 2, Pacific Grove, CA, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/ordering_asilomar94.ps.Z)

[58] J. Teich, S. Sriram, L. Thiele, and M. Martin, "Performance Analysis of Mixed Asynchronous-
Synchronous Systems," Proc. of the IEEE Workshop on VLSI Signal Processing, Oct. 26 - 28,
1994, pp. 103-112. Proceedings published as IEEE VLSI Signal Processing VII
(http://ptolemy.eecs.berkeley.edU/papers/wvsp94.ps.Z)

7.4 TECHNICAL REPORTS

[59] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Two Complementary Heuristics for Translat-
ing Graphical DSP Programs into Minimum Memory Software Implementations," Technical
Report UCB/ERL M95/3, Electronics Research Laboratory, University of California, Berkeley,
CA 94720, January 10, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo/)

[60] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Renesting Single Appearance Schedules to
Minimize Buffer Memory," Technical Report UCB/ERL M95/43, Electronics Research Lab., UC
Berkeley, CA 94720, April, 1 1995.
(http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo/)

[61] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, "Resynchronization for Embedded Multiproces-
sors," Technical Report UCB/ERL M95/70, University of California, Berkeley, CA 94720, Sep-
tember, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/synchOpt/)

[62] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, "Resynchronization of Multiprocessor Schedules:
Part 1 — Fundamental Concepts and Unbounded-latency Analysis," Technical Report UCB/ERL
M96/55, Electronics Research Laboratory, U. C. Berkeley, October, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/resyncl/)

69 of 72

[63] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, "Resynchronization of Multiprocessor Schedules:
Part 2 ~ Latency-constrained Resynchronization," Technical Report UCB/ERL M96/56, Elec-
tronics Research Laboratory, U. C. Berkeley, October, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/resync2/)

[64] A. Lao, "Heterogeneous Cell-Relay Network Simulation and Performance Analysis with
Ptolemy," Technical Report UCB/ERL M94/8, Electronics Research Laboratory, College of Engi-
neering, University of California, Berkeley, CA 94720, February 17,1994.
(http ://ptolemy.eecs .berkeley.edu/papers/cell_relay.ps .Z)

[65] E. A. Lee, "Dataflow Process Networks," Electronics Research Laboratory Report, Tech. Report
UCB/ERL M94/53, University of California, Berkeley, CA 94720, July 1994.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

[66] E. A. Lee and A. Sangiovanni-Vincentelli, "A Denotational Framework for Comparing Models of
Computation," Technical Report UCB/ERL M97/11, University of California, Berkeley, CA
94720, January 30,1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/denotational/)

[67] E. A. Lee, "A Denotational Semantics for Dataflow with Firing," Technical Report UCB/ERL
M97/3, Electronics Research Laboratory, U. C. Berkeley, January 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/dataflow/)

[68] T. Miyazaki, "Integer-Controlled Dataflow in Ptolemy," Technical Report UCB/ERL No. 97/21,
University of California, Berkeley, CA 94720, March 19, 1997.

[69] P. K. Murthy, S.S. Bhattacharyya, and E. A. Lee, "Combined Code and Data Minimization for
Synchronous Dataflow Programs," Technical Report UCB/ERL M94/93, Electronics Research
Laboratory, University of California, Berkeley, CA 94720, November 29, 1994.
(http://ptolemy.eecs.berkeley.edu/papers/jointCodeDataMinimize).

[70] P. K. Murthy and E. A. Lee, "On the Optimal Blocking Factor for Blocked, Non-Overlapped
Schedules," Technical Report UCB/ERL 94/46, University of California, Berkeley, CA 94720,
June 6, 1994.
(http ://ptolemy.eecs .berkeley.edu/papers/opt_blocking_factor.ps .Z)

[71] P. K. Murthy, and E. A. Lee, "A Generalization of Multidimensional Synchronous Dataflow to
Handle Arbitrary Sampling Lattices," Technical Report UCB/ERL M95/59, Electronics Research
Lab, UC, Berkeley, CA 94720, March 20, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/genMdsdf/).

[72] J. L. Pino, S.S. Bhattacharyya and E. A. Lee, A Hierarchical Multiprocessor Scheduling Frame-
work for Synchronous Dataflow Graphs, UCB/ERL M95/36, May 30, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/erl-95-36)

7.5 PH.D. THESES

[73] S. S. Bhattacharyya, Compiling Dataflow Programs for Digital Signal Processing, Tech. Report
UCB/ERL 94/52, Ph.D. Thesis, Dept. of EECS, University of California, Berkeley, CA 94720,
July 12, 1994.
(http://ptolemy.eecs.berkeley.edU/papers/compiling_dataflow.tar.Z)

70 of 72

[74] S. A. Edwards, The Specification and Execution of Heterogeneous Synchronous Reactive Systems,
Ph.D. Thesis, Technical Report UCB/ERL M97/31, University of California, Berkeley, May
1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/).

[75] A. Kalavade, System Level Codesign of Mixed Hardware-Software Systems, Ph.D. Thesis, Techni-
cal Report UCB/ERL 95/88, Dept. of EECS, University of California, Berkeley, CA 94720, Sep-
tember, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/kalavadeThesis)

[76] P. K. Murthy, Scheduling Techniques for Synchronous and Multidimensional Synchronous Data-
flow, Ph.D. Thesis, Technical Report UCB/ERL M96/79, EECS Department, University of Cali-
fornia, Berkeley, CA 94720, December 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/murthyThesis)

[77] T. M. Parks, Bounded Scheduling of Process Networks, Ph.D. Thesis, Technical Report UCB/
ERL-95-105. EECS Department, University of California. Berkeley, CA 94720, December 1995.
(http://ptolemy.eecs.berkeley.edu/papers/parksThesis)

[78] S. Sriram, Minimizing Communication and Synchronization Overhead in Multiprocessors for
Digital Signal Processing, Ph.D. Thesis, Tech. Report UCB/ERL 95/90, Dept. of EECS, Univer-
sity of California, Berkeley, CA 94720, November 7, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/sriramThesis)

7.6 MASTERS REPORTS

[79] M. J. Chen, "Developing a Multidimensional Synchronous Dataflow Domain in Ptolemy," MS
Report, Technical Report UCB/ERL No. 94/16, University of California, Berkeley, CA 94720,
May 6, 1994.
(httpV/ptolemy.eecs.berkeley.edu/papers/mdsdfDomain.ps.Z)

[80] W. Chen, Real-time Signal Processing on the Ultrasparc, MS Report, Technical Report UCB/
ERL No. 97/4, University of California, Berkeley, CA 94720, May 6, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/ultrasparc)

[81] A. Peevers, A Real-Time 3D Signal Analysis/Synthesis Tool Based on the Overlap-Add Short-
Time Fourier Transform, MS Report, Plan II, University of California, Berkeley, CA 94720, Feb-
ruary 24, 1994.

[82] F. Sheikh, Visualizing Architecture and Algorithm Interaction in Embedded Systems, MS Report,
EECS Department, University of California. Berkeley, CA 94720, September 17, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/visualizing)

[83] S.-I. Shih, "Code Generation for VSP Software Tool in Ptolemy," MS Report, Plan II, Technical
Report UCB/ERL M94/41, University of California, Berkeley, CA 94720, May 25, 1994.

[84] P. Warner, Network of Workstations Active Messages Target for Ptolemy C Code Generation, MS
Report, Technical Report UCB/ERL No. 97/8, University of California, Berkeley, CA 94720, Jan-
uary 24, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/now)

71 of 72

7.7 NEWSLETTER ARTICLES

[85] The Ptolemy Team, "System-Level Design Methodology for Embedded Signal Processors,"
RASSP Digest Newsletter, July, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/newsletters/)

[86] The Ptolemy Team, "The Ptolemy Kernel— Supporting Heterogeneous Design," RASSP Digest
Newsletter, vol. 2, no. 1, pp. 14-17,1st Quarter, April, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/newsletters/)

[87] The Ptolemy Team, "Ptolemy Seamlessly Supports Heterogeneous Design," RASSP Enterprise
Newsletter, vol. 1, no. 3, August 1994.

72 of 72

